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ABSTRACT

A technique has been developed which allows prediction and analysis of the
dynamic response of vehicles traversing yielding and non-yielding rough surfaces.
Virgin terrestrial and extraterrestrial surfaces are classified according to their frequency
and amplitude distribution. A single parameter has been defined which, when properly
interpreted, is sufficient to completely specify their surface roughness. This classification
determines the nature of a random input to an analog computer simulation of the vehicle
and surface dynamic models. Parametric model analysis can then be performed with the
output criteria specified statistically.

In addition, deterministic inputs can be used, and a simplified linear model

technique is presented using transfer function concepts.
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I. INTRODUCTION

The effects of surface roughness on the design and operation of vehicles has been in-
vestigated for a number of years. An analytical approach to the study of these effects re-
quires a mathematical model of the vehicle which is excited b* the surface profile. Initial at-
tempts (1) (2) to study this problem in the automotive industry consisted of subjecting mathe~
matical automobile models to well defined mathematical inputs such as sine waves, step
functions, triangular waves, etc. Verification of the analysis was accomplished by construct-
ing specific obstacles and driving instrumented automobiles over them. While this technique
served to verify the analysis it was difficult to optimize design, or study behavior since the
validity of the input was questionable.

As better methods of measuring and recording actual surface profiles were developed,
the aircraft industry became involved in analyzing the effects of runway roughness on aircraft.
A statistical method (power spectral density)(s) for classification of runway profile was adopted

(4) (5).

and a number of measurements were made Attempts were made to statistically analyze
simple linear aircraft models. The problem associated with this analysis was the interpretation
of the output. Methods have recently been developed(é) which use a deterministic runway
profile as an input to a dynamic model. Where a specific section of profile is of interest, as
in aircraft runway analysis, it is more meaningful to look at a deterministic input for analysis.
This allows, not only the evaluation of the response of a particular airplane to a particular
runway, but also the prediction of those runway sections where repair work might contribute
to smoother dynamic performance.

At the same time that the aircraft industry was developing the statistical approach for

aircraft analysis, the Army became interested in this approach for studying dynamic problems



7)®)

of military vehicle cross-country operations In this case, where no specific path of
travel is defined, statistical classification of surface roughness appeared to be a promising
method of attack.

When the problem of operating surface vehicles in extraterrestrial environments is con-
sidered, the analytical approach becomes a practical necessity. The cost and complexity
associated with experimental testing in extraterrestrial environments precludes this approach to
vehicular design. It thus becomes necessary to develop accurate analytical techniques which
permit investigation of design parameters. There is, seemingly, a paradox between the two
analytical approaches to vehicle dynamics, i.e., deterministic versus random input functions.
This paradox stems from the fact that for a vehicle operating in an extraterrestrial environment,
the concern is with the encounter of a singular obstacle which may result in a catastrophic
failure, such as vehicle roll-over. It is argued that with the statistical approach, these ob-
stacles are smoothed, in some sense, over the surface such that an obstacle {be it a lunar
crater or a terrestrial rock) is "lost" in the statistical definition of the surface. Conversely,
the statistical approach appears very promising since no discrete traverse of a surface segment
can be chosen for analytical evaluation or optimization of vehicle design. The basic premise
behind the approach to vehicle dynamics outlined in this report is that the statistical determina-
tion of surface roughness is a necessity for characterizing virgin ferrestrial or extraterrestrial
surfaces. This approach not only allows meaningful investigation of the probability of en-
countering a singular obstacle, but it is the only rational and accurate way of determining
this probability.

This report is based on an application of existing statistical techniques. An approach
is outlined which, when expanded, should provide a means for optimization of vehicle design
and study of the behavior of vehicles traversing rough surfaces. To this end four objectives

were established at the onset of this research study.
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These objectives are:

1. To define surface roughness in a concise and meaningful fashion with a

minimum number of parameters and in a form usabie for vehicle analysis.
2. To include the dynamics of yielding surfaces in vehicle model analysis.
3. To analyze non-linear systems for both vehicle and surface dynamic
models.
4. To develop output criteria for vehicle optimization determined by the

probability of exceeding design limits.

One method of meeting all of these objectives is to specify the surface roughness statis-
tically, such that a representative time trace can be generated for input to an analog computer

simulation of the vehicle. Figure | shows a block diagram of the conceptual approach.

Vehicle Limit
— Model ™ Prediction
Amplitude ]
Random . and
Noise Frequency Interaction
Shaping l
APD
Soil ond
—> MOdeI —> PSD
Calculation

Figure 1 BLOCK DIAGRAM FOR NON-LINEAR SYSTEM ANALYSIS



Il. SURFACE ROUGHNESS

After reviewing the existing methods of classifying surface roughness, it was concluded
that the power spectral density (variance density spectrum) offered the most promise for the
present application. A number of investigators have observed that the P.S5.D. of natural surfaces

and most man-made surfaces (aircraft runways and highways ) can be expressed by Equation 1.
v ~ =N

Where P4(f1) is the P.S.D. of the surface displacement (profile height) with units of metersz/
cycle /meter, N is a spacial frequency in cycles /meter and C' and N are constants for any
given spectral estimate. Figure 2 shows a number of published P.S.D.'s. Table 1 lists a des-
cription of these profiles and computed values of C'and N. N is a dimensionless constant and
C'isan empirical constant whose dimensions vary with the value of N.

Table 1 shows that N is approximately 2.0 for both natural and man-made surfaces.
Man-made surfaces can be artificially constructed to give any value of N. Man's influence
may accentuate some frequency component making Equation 1 invalid for some surfaces (wash-
board roads, plowed fields, expansion joints in concrete pavements, etc.). The P.S.D.'s from
surfaces 12 and [3 in Figure 2 and the results of lunar surface analysis in Appendix A indicate
that natural surfaces have no favored or predominant frequency and that the value of N in Equa-

tion 1 is approximately 2 for these surfaces. This gives Equation 2 for the P.S.D. of virgin

terrestrial or extraterrestrial surfaces.

Py (N) = cn? (2)
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Table 1

VALUES OF C' AND N FOR P.S.D.'s OF FIGURE 2

I:'N\Jsmllajer Description Reference 7 N c' c" c''
[ Runway (o= .016) NASA-TND-510 3.8 4.3x107"1 [.0x10712 [.6x 107!
2 Runway 3 NACA-TN-4303 2.0 7.0x1078 6.1x10®  2.2xi077
3 Runway | NACA-TN-4303 2.6 1.9x108 9.6x10® 2.9x1078
4 Runway 35 NACA-TN-3305 2.1 2.7x107 1.6x105  7.7x107/
5 Smooth Highway REF. 7 2.1 4.8x107 2.6x10°  L2xi07®
6 Runway (o = . 250) NASA-TND-510 1.9 6.4x107 8.7x107>  2.3x107®
7 Runway 12 NACA-TN-3305 2.0 8.2x1077 6.0x107°  2.5x[07°
8 Runway 4(200'/sec) ~ AGARD-REP 119 4.1 2.1x107° 9.0x10'l  5.3x1077
9 Smooth Runway NACA-TN-3484 2.1 2.4x10° [.3x1004  6.6x107%
10 Highway with Gravel  REF. 7 2.1 4.4x107% 2.4x10*  1ix1070
I Rough Runway NACA-TN-3484 2.1 8.1xI0° 4.3x107%  2.3xi07°
12 Lunar Profile Appendix A 2.0 3.6x10% 3.6x1002  J.2x1073
13 Aberdeen REF. 8 2.0 4.8x107% 48x1072  [.6xl073
NOTE; C' = Value Computed for Py(f1) in m2/cycle/m
C'" = Value Computed for Py(N.) in cm2/cycle/cm

C'" = Value Computed for P4(N.) in ft2/cycle/ft



The constant C indicates that no predominant frequency is expected. This constant has the
dimension of length and is a measure of surface roughness. The exponent of -2 predicts that

the amplitude of a surface undulation is directly proportional to its wave length.

Z2.1 Slope Distribution.

It is of interest to compare Equation 2 with other published methods of surface classifica-
tion. The U. S. Geological Survey has been processing various lunar photographs in an attempt
to map and classify sections of the lunar surface. These photographs range all the way from low
resolution earth based photographs to the highest resolution Ranger photographs. The surface
slope at numerous points has been measured by optically scanning each photograph and account-
ing for changes in surface reflectivity. Since resolution varies considerably between photographs

the base length over which the slope is measured covers several orders of magnitude.

o Ranger VH, P_ -979

R L Y )

> d Average Maria Slopes (1 km)

2 1.0 \).( Average Maria Slopes (10 km)
£ —Y ,

Py \0\ Regional Maria

2z 01 Slopes (500 km)
8

B .01 1 1 | 1 ] 1 1

= 10" 10° 10" 10?7 10® 104 100° 10¢

Slope Length in Meters

Figure 3 MEDIAN SLOPE vs SLOPE LENGTH

Figure 3 is a U.5.G.S. plot of the median slopes versus base length. The four data points, each
measured from a different photograph, fall on a straight line in this log~log plot. This relation-

ship is expressed by Equation 3. S is the median slope in degrees, K is a constant and &L is



S:.K(AL)-]/2 3)

the base length. Since S is less than 10° in every case the height of rise Y over the segment
A Lis approximately:

/2

Y S.ALoc(AL)I (4)

The wave length is proportional to & L and inversely proportional to M., the spacial frequency.

Noting this fact and also noting that Pgq () oc Y2/ﬂ yields:
P (M Y2 /NN 2 (5)

which agrees with the form of Equation 2. Thus, Equation 2 appears to be applicable over a

wide range of spacial frequency covering several orders of magnitude.

2.2 Curvature

The Bendix Systems Division has proposed a method of lunar surface classification using
“curvature ".(9) This is essentially an adaptation of a method used by the metal-working in-
dustry for assessing the smoothness of contoured surfaces. For three elevation points, or heights,
the perpendicular height & H of the center point above the line joining the two outermost points
is computed for various base lengths. The base length A L is the horizontal distance between the
two outside points. To demonstrate this method the authors of Reference (?) used a 65 x 65 matrix
of elevation points (points spaced 1.25 feet apart) from an 80 x 80 foot area of the Bonito Lava
Flow. AALof 2.5 feet (3 data points) was used to compute a 2 H for every possible combina-

tion. A standard deviation for A_H_2 was then computed. The process was repeated with

(aL)
A L= 5ft. (5data points ignoring the 29 and 4th points) to arrive at a new value of the standard

deviation. This process was continued until & L of 80 ft (65 data points) was reached. A log-log



A H

plot of the standard deviation o of versus AL is shown in Figure 4. The authors

(a2
100
o 010

\
\
\
.001 .
1 10 100
Al

Figure 4 Plot of -~ versus AL from ref. 9

arrived at the formula

o = Kal)" 6)

where the two numerical factors K and n were said to "uniquely describe a particular surface. "
The values obtained for these constants were K = 0.412 and n = - 1.449. Equation 6 can be re-

written in the form of Equation 7 by assuming n to be - 1.5 and noting that o is a measure of

A H
L
(al) A H s
«< (an™" (7)
(at)?

Noting that & H is, in some fashion, proportional to profile height and AL is proportional to

the wave length and inversely proportional to spacial frequency.N., Equation 7 becomes:
vnZ onld (8)

Squaring both sides of Equation 8 and dividing by.ﬂ.5 yields:

Py (M) Y2/n o N2 (9)

Equation 9 is identical with Equation 5 and again agrees with the form of Equation 2.

9




2.3 Power Spectral Density

The power spectral density is a second moment or variance density spectrum. The concept
of variance is important since variance is additive and provides the only meaningful method of
dividing a random function into its frequency components. In order to classify surface profiles
using P.S.D. techniques it is essential that the profile record be a sample function from a
stationary random process. Stationarity implies that the statistical properties of the profile
height do not change with position. While this is not strictly true for the surface in question,
it is customary to assume quasi-stationarity and estimate the P.S.D. from finite samples of the
surface profile. This estimated P.S.D. allows a reasonably accurate measurement of the fre-
quency content of a particular surface and thus is useful for surface classification.

If the surface profile is measured as digitally sampled data points over a finite traverse,
then numerical methods can be used to arrive at an estimate of the P.5.D. Appendix A gives
a complete development of the concepts necessary for P.5.D. estimates from finite samples to-
gether with processing of lunar data and a computer program for P.5.D. estimates from Fourier
series coefficients.

A discussion of the interpretation of P.5.D. and its relationship to the Fourier series coef-

ficients is offered by the author in reference (10).

2.4 Space Domain Smoothing

Since Equation 2 predicts that the amplitude of the surface profile varies proportionately with
the wave length, it is difficult to separate the concept of non-stationarity from the probability
of encountering a wave length of the order of, or longer than, the data sample. In order to cope
with this problem several investigators have developed methods of removing "non-stationary" trends

from the data. This problem resolves to one of separating an observed elevation profile into two

10



sub-series, one containing only long wave lengths (the trend), and the other containing only
components of shorter wave length (detrended data). It has been argued by two invesfigators(8 X ),
that the most realistic filter appears to be based on a linear moving average. The author of Ref-
. erence (1) noted: "While the method has previously been used to filter out non-stationary trends
from other types of data, the theoretical implications of the distortions resulting in the filtered
profile are not clearly understood." |t can be shown that, while this linear detrending attenuates
the lower frequencies with a period of the order of the average, it does this at the expense of
altering or contaminating the data in the range of interest.

In order to cope with this problem, an exponentially weighted average has been developed
for detrending the data. This exponentially weighted average appears similar to the effect derived

(12).

from an electrical high pass filter When the signal is available in analog fashion, it is
necessary to weight only the past history of the signal and compute a one-sided exponential
average. This results in the characteristic phase shift associated with analog filters. When the
data is available in digital form it is possible to calculate the exponentially weighted average
in both the past and the future. This two sided exponentially weighted average is a 6 db per

octave filter with zero phase shift. Equation 10 expresses the mathematical process of computing

this exponential detrending of the data.

Fg () =F(x)-2_'>\_[[F(x + a) + F(x-a)]e"’/)‘da (10)

=0

Where F (x) is the detrended filtered) function, F(x) is the original function and }\ is the ex-
ponential weighting constant (tfime constant in the time domain). Appendix A develops the
numerical method for computing this detrending which was used to process Ranger data and gives

the computer program. In this case the numerical integration was performed out to 3 \ .

11
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The necessity for smoothing the data in the time domain depends, to a large extent, on
the nature of the data. No detrending is necessary if the function is stationary and the range
of sample data is much larger than any expected wave length. In the case of profile measure-
ments it has been predicted here that the amplitude varies directly with the wave length, hence
detrending is a necessity to achieve an accurate estimate of the P.S.D. While it might appear,
at first glance, that the "trend" would only alter the components of long wave length, it actually
will alter all components. If the trend is significant it might easily obscure the real data of in-
terest. Figure 5 shows both the undetrended and the detrended P.S.D. calculated for the Lunar
surface from Data Set 4 (See Figure A-7) in Appendix A. This data has a substantial linear trend
and the effect of this trend is to raise the estimate of the surface roughness at each frequency.
An estimate of the P.S.D. for the finite sample of the trend alone is of the form predicted by

Equation 2. A further discussion of the contamination of data trends is offered in Appendix A.

1 2.5 Frequency Domain Smoothing

In general, it is also necessary to smooth the estimate of the P.S.D. in the frequency
domain. This necessity is due to the fact that an uncertainty exists between the estimate of
the magnitude and the frequency resolution based on the length of the data sample. Two types
of spectral windows are employed in Appendix A; one based on a linear average and the other
on an exponentially weighted average. The concept of spectral windows is well developed in

the literature '3) and no further discussion will be undertaken here except to make two ob-

servations,

(1) The concept of an exponentially weighted average for smoothing
in the frequency domain appears promising and arguments as to
the time domain effect of this spectral window can be made which

are essentially reciprocals of the arguments made in Section 2. 4.

12
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(2) Assuming a spectral shape, as in Equation 2, and forcing the data to fit
this shape, results in the ultimate in frequency domain smoothing. Thus,
for the P.S.D., if the frequency content is fixed, an accurate estimate

of the magnitude can be obtained from rather crude data.
2.6 Variance

In order to expand on the second observation above, it is of interest to explore the con-
cept of variance. Variance is a measure of the deviation from the mean and, in the case of
a surface profile, is a measure of roughness. The variance is also the integral on frequency of
the P.S.D. Thus, it would appear from Equation 2, that the variance of the surface profile

would be:
(e 0]

Var= o2 = [cn 2 4n (rn

The integral of Equation 11 does not exist however, due to the singularity at zero frequency.

This is another way of looking at the need for space domain smoothing. It was noted in Section
2.4 that the exponentially weighted average detrending is a 6 db per octave filter with zero
phase shift. The significance of this technique is that the exponential character allows a rigorous
frequency domain interpretation of the space domain filtering. Substituting the square of the
filter transfer function (the power ratio) into Equation 11 gives Equation 12, which can be inte-

grated (See Appendix A).

-2 2
2 cn d N Ccw >\
Var= o “ = z — (12)

, 21 2 2
1 )
°[ 2w N N J

Equation 12 shows the relationship between the variance of the data, detrended with filter con-

stant >\, and the value of C. This relationship is important for two reasons.

14



(1) It allows a verification of the surface profile frequency content predicted
by Equation 2. That is, it is possible to detrend data with different values
of \ and compute variance. If the computed value of C is invariant with
changes in \>\ then Equation 2 is valid. Table 2 gives such a comparison for
two different >\'s using the Lunar data of Figure 5. This method can also
be used to establish the maximum usable value of )\ since the value of C will

be substantially increased by effective trends.

(2) If Equation 2 is a valid description of the surface, it is possible to compute
C and thus the P.S.D. of a surface profile from only the variance of the de-
trended data. In the case where crude data is available this estimate is ex~

pected to be more rigorous than the actual P.S.D. calculation.

Tabie 2 COMPUTATION OF C FOR LUNAR DATA

>\ Variance C
(meters) (meters2) (meters)

5 6.15x 1073 2.5x 1074

! 1.29 x 1073 2.6 x 1074

2.7 Variance of Siope Calculation

To show the relationship between the slope calculation of Section 2.1 and the value of C,

consider the following argument. The height of a sinusoid is given by:

Y = sin (2 TN x), _ (13)
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The height difference AY over an increment AL is:
AYzsin[27n(al + x)] -sin 2770 (14)

The variance of &Y over the entire range of the sine wave is:

X
Var (ay) = Hmit b [ (av)? g
21 2
= 5o | [in@TA@L + ) -sin @7 ] Ta@rns
o
- 2sin (TNAL) (13)

Equation 15 is the variance of the height change for a fixed base length AL and a unit ampli-

tude sine wave. Slope variance is:

inl
Slope Var = Var (&Y) _ 2sinc(MN.AL) (16)

(&l (aL)?

In order to -convert Equation 16 to the P.S5.D. form for a surface profile, Equation 2 is

utilized to give the "amplitude" of the sine wave. This yields:

2

len-2 4sin2(1TﬂAL) _ 2 ~[sin (W N.aL)
rin,an[en?] LLmal g2 climarna] )

A factor of two has been included in Equation 17 to account for the convention that the variance
is the integral of the P.5.D. on frequency from 0 to . Equation 17 gives the formula for the
variance of the slope due to the contribution of the surface roughness in a unit frequency range
about M. for a fixed & L.

For a true differentiation of the profile A L= 0 and Equation 17 becomes:

(18)
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Noting that the P.S.D. of the derivative of a function is equal to (2 W M) times the P.5.D.
of the function, Equation 18 is consistent with Equation 2 and predicts that the slope P.S.D.
is "white" or independent of frequency.

The effect of the “artificial" differentiation by using a fixed A L can be seen by compar-
ing Equation 17 with Equation 18. At zero frequency the two are identical but at any frequency
above zero the artificial differentiation gives anattenuation as shown in Figure 6. The variance

of the fixed & L slope calculation can be computed by integrating Equation 17 over frequency.

© 2
2 .
22 j4ﬂzc[s.n(w nm.)] an . 212C (9)
s wNal Al
o
The standard deviation of the slope is then:
1/2
o = W (L (20)
S AL

Many times slope is measured in degrees (see Section 2.1). For practical values of AL the

angle is less than 10°, and the tangent of the angle is approximately equal to the angle. Thus:

1/2
. _ 180 S5 _ 2C )
o, (in degrees) = - = 180 N 21)

Equation 21 allows a calculation of the value of C from slope distribution data. While detrend-
ing is important in this case it is not as crucial as in the profile determination since the singularity
at . = 0 no longer exists. Detrending should be accomplished in the original data before con-
version fo slope information, but this is difficult if the data is originally in slope form. Direct
substitution of a slope variance (from USGS data or similar data) will yield only an approximate

value of C and this approximation is dependent on the trend of the data sample.
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2.8 Spacial and Temporal Frequencies

For vehicle model analysis, temporal frequencies are usually of interest since vehicle
resonances are functions of time. The transformation between spacial frequency (cycles/meter)
and temporal frequency (hertz or cps) is that of the speed of a vehicle over the surface as given
by expressions 22.

f(cycles/sec) =.N.(cycles/meter) V (meters/sec)

P(f) (meters 2/cycles/sec) = P(N.) (meters 2/cycles/mefer) —\I/— (sec /meter) (22)

Substituting these relationships in Equation 2 yields:

Py ()= VCE2 (23)

Similarly substituting expressions 22 into Equation I8 yields:
P, (f) =412 vC (24)

Equation 24 is an important concept since it states that the vertical velocity input P.S.D. to
a vehicle traversing the surface is white.
Equations 23 and 24 show an interesting relationship with vehicle speed. The level of
the input to the vehicle is directly proportional to vehicle speed. If the vehicle system is linear
it is predicted that the vibrational activity of the vehicle will increase in direct proportion to

the speed.

2.9 Amplitude Probability Distribution

The P.S.D. defines the frequency content of a random stationary variable F(x). In
addition to the frequency content the amplitude distribution must be defined to completely

specify the variable in a statistical fashion. The amplitude probability distribution (A.P.D.)
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is the probability that the function F(x) will exceed the level Y. If a finite sample of a con-
tinuous random stationary function F(x) is available, an estimate of the A.P.D. is the percent

of the horizontal distance that the function is above the level Y as given by Equation 25.

X
A.P.D. (Y)= )L_fs(ﬂx)w)dx (25)

Where &§(F (x) > Y) is defined by the relation:

SFH>Y) = 1 if F(x)2Y
(26)

and
§F(x) >Y)=0if F(x)KY

If the data is available as digital points, an estimate of the A.P.D. can be determined by count-
ing the number of points above the given level and determining the ratio of this number to the
total number of available points as a function of the level Y. A digital computer program written
to perform this estimation is presented in Appendix A. The A.P.D. function has the form shown
in Figure 7. The derivative of this function is the amplitude probability density function, also
shown in Figure 7, which is the familiar bell~shaped or normal curve for a Gaussian distribution.
The amplitude probability density function is a measure of the probability that the level of the
function is in the increme-anY about Y.

Figure 8 shows three examples of amplitude probability density piots of the slope distri-
bution for the lunar surface from the United States Geological Survey. Appendix A includes a
number of A.P.D. plots calculated from digital traces from Ranger V11 photographs. It is noted
that in every case the Gaussian distribution is predicted within the statistical reliability of the

data available.

20



Frequency (percent)

R

Probability Distribution Probability Density
Function Function

Figure 7 PROBABILITY DISTRIBUTION & DENSITY FUNCTION

24

20

16 L Northern Mare Nubium

12

Herschel

Slope in Degrees

Figure 8 TYPICAL SLOPE FREQUENCY DIAGRAMS

21



If a process is Gaussian with zero mean, the standard deviation is sufficient to completely
define the A.P.D. and thus the probability of exceeding any given level. As was noted previously
the variance (and thus its square root, the standard deviation) is undefined for an undetrended
surface profile as predicted by Equation 2. If the profile is detrended, the variance is directly
proportional to the exponential parameter >\as given by Equation 12, and the standard deviation

is given by the relationship.

- = <___.sz A\ )I/Z (27)

Thus, the parameter C completely specifies the P.5.D. of the surface profile and also
specifies the A.P.D. of the detrended profile as a function of the exponential parameter >\
This detrending will, of course, lower the estimate of the probability at each level; but if the
data sample is long enough the significant portion determined by vehicle dynamics character-

istics can be maintained.

2.10 Summary of Surface Roughness

It has been shown that the power spectral densities of virgin terrestrial and extraterrestrial
surfaces have a constant shape (as depicted by Equation 2). This shape predicts that no pre-
dominant frequency component exists and that the amplitude of the various frequency compon-
ents is proportional to their wave length. Available information also shows that the amplitude
probability distribution of surface roughness is Gaussian. It is concluded that discrepancies,
from either of these well behaved functions, which are estimated from finite data samples are
due to either the trend effects of the available sample or artifacts in the particular surface which
are non-representative and therefore should be ignored in a statistical surface description. It is,
therefore, suggested that a single parameter (C from Equation 2) completely specifies the raugh -

ness of representative profile traces in a statistical sense. While available information does not
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allow accurate measures of either the amplitude probability distribution or the power spectral
density, it does allow rather accurate measures of the properly detrended variance (and thus

C via Equation 12). Using the above arguments, both the P.S.D. and the A.P.D. can be
estimated from a knowledge of the variance. This surface model is used to characterize random

inputs for prediction and analysis of vehicle motions.
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I, YIELDING SURFACE DYNAMIC MODEL

A considerable amount of work has been done in soft-soil mechanics, but most of this
activity has been directed toward the prediction of vehicles under equilibrium conditions.
Methods exist to predict drawbar pull, power requirements, sinkage, etc., but there is no
comprehensive theory for dynamic wheel-soil interaction. In order to explore this area, a
simple dynamic soil model has been developed. The details of the soil model and its relation-
ship with existing soft-soil mechanics is discussed in Appendix B. The purpose of this section
is to briefly define the soft-soil model, to show a method of incorporating the influence of
vehicle speed over the surface, and to give an analog computer network capable of simulating

wheel-soil interaction.
3.1 Soil Modei

It is shown in Appendix B that a mass-spring-damper system with a highly non-linear
spring rate is a reasonable mode! for vertical soil reaction to loading of a fixed area flat plate.

This model is represented by the schematic of Figure 9 and has the form of Equation 28.

iV

RE

CS ¢ (zlzmax.)

NNNNNNANNN

Figure 9 SOIL MODEL
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maxd Z = Fy (28)

meZ + CZ+ @g(Z,2

The effective mass (mg) represents the inertia effect of the soil in proximity of the load-

ing area. From elastic theory this effective mass is:

3/2
Mg = CIP(_T?—) (29)

C, has the form of a linear viscous damping coefficient and represents the energy dissipa-
tion due to radiation damping (pressure wave propagation in a semi-infinite medium) from elastic

theory.
/2

s T 2 + 27
B (Z, Zygx) is the spring rate which is a function of the sinkage Z and the maximum
penetration Zpgy. I Z<Z  then @ (Z, Z ) is the elastic recovery rate kg given by
B(Z, Zpgy) For Z<Z = ceNa' | ke (31)

max I__-‘)2_.

In Equations 29, 30 and 31:
A = area of wheel footprint
e = Soil mass density (See Table B-5)
7V = Poisons Ratio for Soil (See Table B-4)
E = Young's Modulus for Soil (See Table B-3)
¢ and b, are constants depending on v (See Table B-2)

C is a constant depending on A (See Table B-1)

fZ=2

) is a non-linear rate derived from standard plate penetro-

(22) or

(consolidation), @ (Z, Z

max max

meter measurements of sinkage versus pressure. Bekker Equcfions(w), Assur Equations

similar equilibrium relationships can be used for definition of this functional relationship (See

Appendix B). 95



3.2 Analog Computer Circuit

An analog computer network which simulates soil behavior as characterized by Equation

28, is shown in Figure 10.

F.G.# |
Kg /me

—H

Figure 10 ANALOG COMPUTER NETWORK FOR SOIL MODEL

Amplifiers 1, 2 and 3 and function generator No. | form a feedback loop which represents
the effect of initial soil loading (consolidation). Function generator No. 1 is programmed to
provide the non-linear pressure sinkage curve divided by the effective soil mass. The damping
coefficient around amplifier 1 is the linear damping constant Cs/me. Amplifiers 4 and 5 and
function generator No. 2 form a compensation circuit which becomes active only when the soil
penetration is less than the maximum penetration. Amplifier 4 has one microfared capacitive
input and feedback. It acts as a summing amplifier since the input and feedback impedances
are equal, but it has the additional capacity of storing. The diode in front of this amplifier cuts
off the signal at any time the stored value of maximum penetration is less than the actual value
of penetration af that time. The maximum penetration is then subtracted from the actual

penetration in amplifier 5. If this difference is zero (initial loading) there is no input to the
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circuit through function generator 2. If this difference is less than zero, function generator 2

is programmed to add the proper spring rate such that the sum of the outputs of the two function
generators gives the linear spring constant k_ divided by m,. The potentiometer between amplifiers
4 and 5 is used only to compensate for the non~zero cut-off point of the diode and is not necessary
if the computer used has a hard limiter. Using function generators for the non-linear functions,

it is possible to duplicate any realistic curve both for initial loading of the soil and for the re-
covery phase.

In order to simulate the effect of traversing the surface at a constant velocify V_, it is
necessary to change the characteristics of amplifier 4 in Figure 10. This amplifier is essentially
the memory circuit for maximum penetration. One method of simulating the effect of a wheel
traversing the surface is to give amplifier 4 a "poor memory". The memory deterioration is a
function of the time it takes to replace the wheel contact area. |f the wheel loading were con-
stant there would be no need to compensate for speed effects on the vertical motion since a con-
stant sinkage, i.e., maximum penetration, would be maintained independent of horizontal
position for o homogeneous soil. A dynamic loading due to surface profile effects on the soil and
vehicle, however, requires a recovery of the maximum penetration as new soil is encountered. In
order to investigate this phenomenon consider the two idealized wheel models (a) and (b) in Fig-
ure |1. Model {a) is a rigid circular wheel of radius R which encounters a bump of height H.

In this representation the path of the wheel center is an arc of a circle of radius R. The duration

of the bump encounter is: (See Reference 14).

1/2
/2R H - H?
‘= (___2 (32)
Vi
Thus the duration of the bump encounter is a function of the height of the bump H which is not very

practical for a random input. It does suggest however that the radius R is a reasonable estimate of
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the contact length. The other extreme, model (b) is an idealized enveloping wheel where the
height of the hub is directly proportional to the percent of the contact length that has encountered
the bump. Assuming that the contact length is equal to the radius this gives the bump duration,

independent of bump height, as:
R
F= — (33)
Vx

A more realistic compromise (15) between these two idealized extremes is the exponential function
shown in the graph of Figure 1. Using this exponential function as the memory deterioration
gives the convolution integral of Equation 34. This is the instantaneous maximum penetration
under a moving wheel, which is o function of time, vehicle speed and wheel radius as well os

the past history of penetration.

2V,
2V t R (’C_ i’)
Z ax (1 Vi R) = _RL Z(T)e d T (34)
-

In order to simulate this effect in the analog computer circuit, the capacitors on both
the input and feedback of amplifier 4 in Figure 10 have been replaced by an R~C network having
a time constant equal to 2 V, /R. This maintains the inversion characteristic of amplifier 4 when
Z = Z s since the input and feedback impedances are still equal, but has the effect of giving
the memory circuit for maximum soil penetration an exponential decay such that new soil is always

being encountered.

3.3 Surface Vehicle Interaction

It will be assumed, for the purpose of argument, that the lower element representing a

vehicle whee!l is a mass which might be considered the rim mass of a flexible steel wheel. Figure 12
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shows a representation of this mass above the soil model of Figure 9.

T
W |4 vy —Rim Mass

Yol M MAA Marsh
mg |— $Ys=-2

§Y, — Vehicle Motion

Wheel Compliance

Soil Model

Cq $(Z,Zmax.)

NANNANTNNNEIKYXYXN™

Flgure 12 WHEEL- SOIL INTERACTION MODEL

The equations of motion describing this system are givey by:
RimMass mY =-CY-Y,)-K(Y-Y,) + F, (35)

)Y -F (36)

S v

Surface mg Ys =-C Y- (Z, Z

max

where

F:coifY(Ys-I-Yo

-
1

=0 ifY2Y, + Y,

The random surface profile Y, determined by the statistical classification of Section Il, is inter-
posed between the rim moss and the effective soil mass in such a fashion that the wheel rim cannot
penetrate the deformed surface profile. The wheel however, can leave the surface resulting in
surface-vehicle separation. This effect is simulated by a high gain amplifier with a diode in the
feedback as shown in Figure 13. The output of the high gain amplifier is proportional to the force
F,, acting on the vehicle model in the upward direction and the surface model in the downward

direction.
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3.4 Effect on Following In-Line Wheels

In order to account for the effect of a preceding wheel on a following in-line wheel, it
is necessary to record two functions and time delay these for input to the following wheel. The
first function is the surface profile which must be delayed and fed into the following in-line
wheel-soil model. The second is the effect of the maximum surface penetration of the preceding
wheel as an instantaneous value. This will be used to set the memory circuit of the following
wheel to a present maximum penetration. The following wheel then will encounter the stiff
spring constant k. until such time that it penetrates below the maximum penetration of the preceding
wheel. In this case the circuit will act as before and the non-linear initial loading function will
come into effect. Actually the profile that the rear wheel sees is not the same profile that the
front wheel has seen, but it is this profile altered by the dynamic effects of the preceding wheel.
In order to account for this phenomenon the maximum instantaneous penetration of the front wheel
is added to the surface profile as shown in Figure 13. In this way the following wheel sees a new
profile dictated by the difference between the initial profile to the preceding wheel and the maxi-
mum penetration at that point. This allows for smoothing effects on the profile roughness due to
the traverse of the preceding wheel. This circuit may be duplicated n times to simulate n in-line
following wheels where the input to each wheel is taken from the wheel immediately preceding

-

the one in question.
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IV. VEHICLE MODEL ANALYSIS

The purpose of this study is to develop techniques which can be employed in the analysis
of vehicie motion once a model has been specified, rather than to analyze any specific vehicle
model. To this end, Appendix C outlines the traditional methods for a lumped parameter vehicle
representation and defines coordinate systems and transformation of coordinates. A general n-
wheeled rigid body model is developed in Appendix C together with the analog computer net-
work necessary for its simulation.

In order to implement and demonstrate the methods of analysis outlined below, a simple
four wheeled vehicle model was chosen which is presented in Appendix C. Appendix D presents
a frequency domain analysis of this model using transfer functions for a linear version and Ap-
pendix E presents a non-linear version analyzed in the time domain through analog computer

simulation.

4.1 Frequency Domain Approach

A linear vehicle model is necessary to analyze vehicle motions using transfer function
concepts in the frequency domain. The linear assumption necessitates a non-yielding surface
(or at most, a linear yielding surface) and a vehicle speed below that which would cause surface-
vehicle separation. While this approach places rather severe restrictions on model analysis, it
does allow a convenient solution which yields a good deal of insight into vehicle behavior.

(16) by:

This output P.S.D. for a linear system with one input is given

P, (w)=1T(w)i%p, (@) (37)

That is, the output P.S.D. P, (W) is related to the input P.S.D. P; () through the square of

the transfer function for a linear system. The phase information in the transfer function has thus
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been ignored and only a "real" number function exists which represents the square of the magni-
tude amplification as a function of frequency, (i.e., the product of the transfer function and its
complex conjugate).

If more than one random input is imposed on the linear system then the response P.S.D.

Poa (W) at point a in the system for n inputs is given by:(7' 16)
n n .
Poa(w)=>— ZTai Tck Pik(iw) (38)
i= T k=1
*
where Tai is the transfer function between the ii input and the output at a, Tci is the complex

conjugate of Tai and Pik (i w) is the appropriate cross~spectral density. The cross-spectral density
is a function which shows relationship between two functions in the frequency domain (see Ap-
pendix A). If the two functions are identical it becomes the usual P.S.D. which measures the
variance of the function as a function of frequency. In general, however, if the functions are
related, but not identical, it has both a real and an imaginary component. The real component
(co-spectral density) measures the covariance of the "in phase" relationship of the functions as

a function of frequency and the imaginary component (quadrature spectral density) measures the
"out of phase" covariance. It should be noted that Pik and Pki are complex conjugates. |f

the functions in question are independent random functions then the cross-spectral density is

zero.

Thus the phase relationships have been ignored in going to the random input approach,
but the phase between inputs (wheels of the vehicle) cannot be ignored. [f a certain phase pre-
dominately exists this will influence the motion. For example, if the front and rear wheels are
predominately out of phase the pitch motion of the vehicle will be excited to a greater extent

than the bounce motion.
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4.1.1 Input Considerations

The P.S.D. of the slope input for a vehicle model analysis will now be chosen as the
representative equation for an extraterrestrial surface as given by Equation 18 and reproduced
below :

P. ()= 4m2C ' (39)
where C is the constant from Equation 2 which is a measure of surface roughness. The auto-
covariance of an ideal white function (constant P.S.D. of Equation 38) can be defined in terms

of the Dirac delta function by the following argument.

F(a)= 47 C §(a) (40)
(e o]
PS(_n.):fMTzCS(a)e_l2wnadc:41T2C (41)
- @

Equation 39 states that the surface roughness correlates with itself only with zero space difference.
Two parallel traces across the surface (inputs to left and right side of the vehicle ) would therefore
have no correlation and a zero cross—spectral density. (Appendix A shows an attempt to estimate
the cross-spectral density between two parallel traces spaced approximately a vehicle tread width
apart from available information of the lunar surface. ) It can, therefore, be assumed for constant
velocity straight line travel, that the inputs to the left and right sides of the vehicle are separate
members of an ergodic set having the P.5.D. given by Equation 39.

For following in-line wheels, however, the situation is different. The same function acts
as an input fo the wheels with only a spacial difference (the distance between wheels d). Thus,

with a space lag d the cross covariance of the two input functions is a Dirac delta function or:

B, o)) = 472 C8(a-a) (42)
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(o o]

or C.S.D.:[4772C8(c-d)e_i2ﬂn-ada

Qo

= 4172C e-iZTfﬂd

(43)

2

- 4w C coszwnd-isinzw.nd]

4.1.2 Vehicle Consideration

Differential equations of motion are written for each degree of freedom of the linear
model (See Appendix C). These equations are transformed (via Fourier Transform) to complex
variable algebraic equations for frequency domain calculations. If more than 3 or 4 degrees
of freedom are considered, it is necessary to employ a digital computer to obtain the appropriate
transfer functions in numeric form. These transfer functions can be tabulated to give the magnitude
and phase relationship between each input (wheel ) and each output of interest (See Appendix D. )

The transfer function can be combined via Equation 38 by the arguments of Section 4. 1.1
to give an output velocity P.S.D. at each point of interest in the vehicle. In the temporal fre-

quency domain (cps or hertz) this yields Equation 44 for an n-wheeled vehicle.

n
2
P, (f) at point a= 42 CV, Z [l Toi |

i=1

i=1
- * dik . . dik }]
+ﬁ{2 Z Sik (in line) Ty; Ty (cos 277§ v " isin 2mf T'x—)
k=1

(44)

X

. . 2
P(f) = output velocity P.5.D. af point a [(mefers/sec) / cpé'
C = surface roughness coefficient [meters]
V. = vehicle speed [merers/sec]
T4 = Transfer function between ith input and point a (dimensionless for translational

output and having dimensions of radians/meter for angular output )
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O{ = Symbol for "real part of"

Sik (in line)= 1 if inputs i and k are for in-line following wheels and zero otherwise.

*

Tok = complex conjugate of T,
f = frequency (cps)
di = horizontal distance between input i and k (meters)

The first term in Equation 44 is the square of the modulus of each transfer function times the in-
put P.5.D. The second term is the interaction effects due to in-line following wheels. The two
terms for interaction between each pair of in-line wheels (which are complex conjugates in Equa-
tion 38) have been combined to give twice the real part.

Equation 44 gives a velocity output P.S.D. for each degree of freedom (a) of interest
in the vehicle. To compute a displacement or acceleration P.5.D. it is merely necessary to

2 .
multiply the velocity P.5.D. at each frequency by ! or 41"2 f" respectively.

a2 2

4.1.3  Output Considerations

Since the input function is Gaussian, the output motions of the linear vehicle model
will also be Gaussian. The variance and thus the standard deviation of the output can be cal-
culated by integrating the appropriate P.S.D. over the desired frequency range. Knowing the
standard deviation it is possible to calculate the probability of exceeding any predetermined value.
These values might be the lunar g for lift~off, and static equilibrium angles for roll over and pitch

over (See Appendix D).
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4.2 Time Domain Approach

A time domain approach is used to analyze non-linear systems. Differential equations
of motion are written for the system, to characterize the activity of various elements using
Newton's Second Law (See Appendix C). These differential equations are programmed on an
analog computer such that the various components in the computer behave in @ manner analogous
to the physical system. In order to compute the response of the system to a deterministic input it
is necessary to have two surface profile traces properly spaced for the vehicle tread width recorded
in continuous fashion on magnetic tape. Properly spaced tape heads allow reproduction of the
signals at the proper time to excite the trailing wheels in the vehicle model. Vehicle speed is
controlled by either changing the computer "time scaling" or by changing the playback speed
of the tape.

If random inputs are employed the velocity input can be generated by a random Gaussian

noise generator (See Appendix E.).

4.2.1 Input Considerations

The random surface profile Y is interposed between the vehicle rim mass and the ef-
fective soil mass, such that the wheel rim cannot be below the sum of the surface penetration and
the profile input as shown in Figure 12. This effect is simulated by a high gain amplifier with a
diode allowing surface-vehicle separation as shown in Figure 13.

A random Gaussian white noise generator is used for the velocity input for time domain
analysis. The white noise velocity input is integrated to give a displacement input for insertion
in the circuit of Figure 14. The integrator shown has a cut-off frequency f= 1 which

27T )\
is below any frequency of interest for vehicle motions. This is similar to the detrending (space
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Figure 14 INTEGRATION WITH TIME DOMAIN SMOOTHING

domain smoothing) effects of the surface profile as discussed in Section Il. While this integration
does not adequately account for surface slope characteristics it is necessary to achieve drift free
stability in the analog simulation. The static surface slope can be taken into account in the
analysis of the output.

The method of determining the level of the white noise input is to filter the white noise
between two frequencies f| and f;, ( values of 0.5 cps and 100 cps were used in Appendix E)
and take the mean square value of the result using an analog computer circuit(lz). The gain

can then be adjusted to give

Mean Square input volts = 4mlcy (fp - fy) (“’(T)2

C = surface roughness coefficient (meters)

(45)

V = vehicle speed (meters/sec)
f., = upper cut-off frequency (cps)
f; = lower cut-off frequency (cps)
X = computer voltage scaling (volts/meter)

(3 = computer time scaling (machine seconds/second)
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If the inputs are for wheels which are not following in-line wheels (such as left and
right side of a vehicle), then separate noise generators can be used, each adjusted to the
proper level.

In order to account for the effect of a preceding wheel on a following in-line wheel

)

two functions are time delayed for input to the following wheel. The first function is the surface
profile which must be delayed and fed into the following in-line wheel-soil model. The second
is the effect of the maximum surface penetration of the preceding wheel as an instantaneous

value as discussed in Section 3.4.

4.2.2  Output Considerations

The outputs of the analog computer simulation are voltages which represent the dis-
placement and its derivatives (velocity and acceleration) at each point in the vehicle model.
These can be processed, using analog computer techniques, to give direct estimates of the P.5.D.
or A.P.D. at the point in question (see reference 12 and Appendix E).

In addition, the probability of meeting limiting values can be easily estimated using
analog circuitry. Hard limiters(or diodes) can be employed to give a pulse output at each time
the roll or pitch displacement exceeds some static equilibrium limit. While in reality, the
vehicle operator would normally employ an evasive action prior to ro»ll-over, counting the number
of roll-overs in a given distance traveled is a convenient method for vehicle comparison. The
percent of time that lifi-off occurs for any one wheel or any combination of wheels can be

~ measured in a similar fashion (See Appendix E).
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V. SUMMARY

A statistical analysis technique has been developed for the classification of virgin ter-
restrial and extraterrestrial surfaces. It has been demonstrated from available data that the
power spectral density of profile height for a traverse across the lunar surface is equal to C-n-z,
C is the surface roughness coefficient and JLis spacial frequency. A six db per octave, zero
phase shift filter has been devised and implemented to detrend finite digital data samples and
thus allow an accurate estimate of the surface roughness coefficient. Available information
shows that the amplitude probability distribution of surface roughness is Gaussian. The variance
can be computed by integrating the P.S.D. over the frequency range of interest and it is suf-
ficient to predict the probability of exceeding any given level. Thus, the single parameter C
completely specifies the surface roughness in a statistical sense (see Section |l and Appendix A).

A dynamic non-linear yielding surface model has been developed from existing informa-
tion of soil mechanics. This model includes the hysteresis due to initial soil compaction and
effects of vehicle speed and loading area (see Section |1l and Appendix B).

Traditional analog computer techniques have been used to simulate lumped parameter
models of typical lunar vehicles. An analog computer network , capable of accurately predict-
ing the dynamic response of vehicles traversing yielding and non-yielding surfaces (see Appendix
C) has been developed and implemented. A technique is included which allows a random sur-
face profile to be introduced between the vehicle model and the yielding surface model and
allows vehicle-surface separation. The probability of exceeding design limits can easily be

predicted, from this model analysis, and used for vehicle design optimization.
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An early NASA concept vehicle model was used to demonstrate the stochastic techniques
of model analysis. Appendix D describes a linear frequency domain analysis of this vehicle model
on a non-yielding surface using transfer function concepts. In this case a random input was deter-
mined from lunar surface roughness. The probability of exceeding design limits was predicted by
computing the variance of vehicle motion and assuming a Gaussian output distribution based c-:m
the linear system model and Gaussian input.

Appendix E describes the time domain analysis for a non-linear version of the same vehicle
mode! on a yielding surface using the analog network. In this case the prediction of meeting

limiting constraints can be directly measured from analog output.
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VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions
The following conclusions result from the general investigation and theoretical development
reported herein.
(1)  The properly interpreted variance of the surface profile is sufficient to completely
specify, in a statistical sense, the surface roughness of a virgin terrestrial or extra-

terrestrial surface.

(2) A statistical technique has been devised and implemented for analog computer solution
which is considered the best available method for analyzing vehicle motions excited

by rough yielding and non-yielding surfaces.

6.2 Recommendations

The following recommendations are made in the interest of aiding future research programs
tailored toward surface classification and vehicle performance.
(1) A generalized digital computer program should be written to allow statistical analysis

of digital profile height and slope information and classification of surface roughness.

(2} Statistical techniques should be developed and implemented in the form of computer
prediction of vehicle power requirement, mobility analysis, LEM landing site accepta-
bility analysis, and other key engineering applications based on the surface roughness

classification.
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(3)

(4)

Further study is needed to establish the validity of the yielding surface model and
an experimental program should be undertaken with a typical vehicle on a yielding

terrestrial surface.

Complete statistical dynamic response analysis should be made using the latest lunar
vehicle designs being developed, for the purpose of establishing more complete design

criteria and design modifications.
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ANALYSIS OF LUNAR SURFACE ROUGHNESS

By: G. E. McCarron and V. J. Borowski

This appendix is a development of the mathematical concepts necessary to characterize
surface roughness in a statistical fashion and a presentation of the analysis of some of the avail-

able data from Ranger photographs.

A.1 Theory

This section is a development of the theory and mathematical concepts as
applied to the processing of Ranger data and classification of the lunar surface

roughness.

A.1.1 Determination of Spectral Density

The power spectral density (P.S.D.) is the second moment or
variance density spectrum. In order to determine the P.5.D. for a
surface, the profile record must be a sample function from a stationary

(13)

random process. Stationarity implies that the mean value and
higher moments are space invariant. P.S.D. of a random function,

f(x), is defined as the Fourier transform of its autocovariance. The

average height of the profile function f(x) is expressed in Equation A-1.

X
-y _ Limit 1 ) dx -1
f = 2 7>'<_;()d (A-1)

In order to compute a meaningful autocovariance the average must be
zero. This can be achieved by subtracting the average value from each

of the points in the original function.
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F(x) = f(x) -—lrx) | (A-2)

The autocovariance, @ (a), is defined by Equation A~ 3.
X

g@= gt 5;7 F(x) F(x + a) dx (A-3)
X

The P.S.D. is defined by Equation A-4,
ot i21TN
P(n)=2 [,‘3 (a) e " da (A-4)
®

The factor of 2 in Equation A-4 is due to the convention adopted in
this report, that the integral on frequency from 0 to e of the P.S.D.
is the variance. The P.5.D. can be obtained by direct substitution of

Equation A-3 into Equation A-4.

© X
PN = 2 [{)L('_’:"; 5'7( [F(x) Fx + c)dx} S2Ta,  (A-5)
~ @ - X

If F(x) is a well behaved function, in the mathematical sense, the above

expression may be written as:

X
P(N.) = l;;_"_l':o YI ﬁﬁ(x) F(x+ a) dx} e i 27 n'ado (A-6)
a-X

It is now convenient to define a new function H(x) such that

F(x) for x S_IX|
H(x) = {
0 for  x »|X|

By changing the order of integration Equation A-6 may be written:
® o (A-7)

. . - N i
P(N.) = Limit 1 Hix +4a) e i2mR(x + c’)dv:x H(x) e' 2Wﬂxdx
X+ o X o

{

[o 0]
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The Fourier transform S{N.) of H(x) is defined as:

O o
s(n) = fH(x) e 12T Xy . [H(x 4 a) e 12T N (x + 0, (A-8)

= -0

Substituting Expression A-8 into Equation A-7 gives

Limit | Limit |
PU) = o 5 S(N) S(-N) = 0 5 | s(n) |2 (A-9)
@ /.X
Limit 1 -i2mN x 42 _ Limit 1 -1 2T iux 12
= Yow X 'JH(x)e de 2 Yoo xUF(x)e dxl
@ -X

Equation A-9 states that the P.5.D. of a random function F(x), is the average
of the square of the modulus of its finite Fourier transform in the limit as the
averaging time goes to infinity.

Using Euler's theorem the final form of Equation A-9 can be expanded

to yield.
o yie X «
PL) = ;-(I_T_l; ';Z' ﬁ(x) cos (277N.x) dx - i/;(x) sin (2 7T x) dx |2 (A-10)
X - X
The two functions A(f1) and B(N.) will now be introduced and defined as follows:
X
A() = %ﬁ(x) cos (27 N.x) dx (A-11)
X X
B(N.) = ;.( fF(x) sin (277 N x) dx (A-12)

Substituting £xpressions A-11 and A-12 into Equation A-10 yields:

= X— o

Py = K x L ac - e 2 2 T x[an)? + s] i)

A similar relationship between Fourier transforms and cross-spectral density of

two related functions, F{ and F2, is
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.1

X

X
. Limit 1 ~i27TWN.x i2TNx
cin)-= VI [ F I(x) e dx] [ ﬁz(x) e dx] (A-14)
£X =X
Substituting the Exgrassions A=11 and A-12 for the functions F 1(x) and

F2(x) into Equation A-14 gives:
(A-15)

C(i.ﬂ)=)l<'_iii; X{A,(n) A(n) + By(n)BYN) + i[AN) Bz(n)-Az(.n)B,(n)]}

The real part of C(i N.) is the cospectral density and the imaginary part is the

quadrature spectral density.

Estimation of Power Spectral Density

If the profile height Y; is available at equal increments & x over a
finite length the autocovariance function ﬂc can then be approximated by the

relationship:

o | -
ﬁq-n_qz ViYL (A-16)

The P.S5.D. estimate is: (p. 53 Ref. 13)

m-1
Pn) = 2aX[g, + 2 Z fycos "2l 4 g cos n ] (A-17)

az |

Another method of estimation from a finite data sample of length L = 2X

is to use Equation A- I3 and neglect the limiting process.
P = L [a)? + B()?] (A-18)

The functions A(N.) and B(N.) are defined in Equation A~11 and A-12 as continuous

functions of fL. These definitions are identical to the Fourier series coefficients
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1.3

at the discrete frequencies where N.= n/L and n is a positive integer. Thus,
at these discrete frequencies an estimate of the P.S.D. can be defined by
Equation A-19.

P) = = [ A2 +8(n)2] (A-19)

Due to the inability to accurately resolve any frequency in a finite sample, it
is necessary fo smooth the spectral estimates from Equation A- 17 or A-19 over

neighboring frequencies.

@
P(n) = Z AL P(n-k) (A-20)
k=-ow
The A\ coefficients define a particular spectral window. Table A-1 lists the

coefficients for five spectral windows where the first three have been previously
published. The last two are linear and exponential windows developed for
analysis of lunar surface profiles since it was deemed necessary to smooth the
P.S5.D. estimates over a wider frequency range for the limited amount of avail-
able data. A digital computer program (FOR-5) based on an implementation of

Equations A-19 and A-20 is presented at the end of this Appendix.

Stafionarity and Space Domain Smoothing

A stationary random process is defined as one whose statistical properties are
unaffected by a shift in the scale of the independent variable of the process. Since
the length of a data sample determines a lower limit on frequency resolution it is
not possible to prove stationarity from a data sample of finite length. Any component

of the process with a frequency less than the limiting value appears as a trend or
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Table A-1 COEFFICIENTS OF SPECTRAL WINDOWS
C\craéfffcienrr 7 Hamming Hanning Akaike Linear Exponential
- Values Values Values Values Values
Ag .54 .50 .42 S . 29395
A|=A_| .23 .25 .25 S . 10531
A=Ay 0 0 .04 A1 07546
Ay=Ag 0 0 0 AT 05407
A4:A_4 0 0 0 A RRRD ‘ .03874
Ag = A_g 0 0 0 0 .02776
Ag = Ag 0 0 0 0 .01989
Ay =zA_y 0 0 0 0 .01425
Ag = A_g 0 0 0 0 .01212
Ag = A_g 0 0 0 0 .00732
All others 0 0 0 0 0

non-stationary component which will contaminate P.S.D. estimates computed from

the data. Two types of common trends found in surface profile traces are shown in
Figure A~1. In order to reliably process data it is necessary to eliminate the trends
from the data and ancllyze the results, with the realization that low frequency compon-
ents have been removed. A numerical filter based on a moving two sided exponentially
weighted average was developed to compute the trend for digital data.

The data

trend F(x) at point X as a function of the original data F(x) is given by:
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Raw Data 1 Raw Data 2

Trend 1 Trend 2

Figure A-1 TWO DATA TRENDS

F(x-4a) F(x-2a) F(x) F(x+2a) F(x+4a)

Figure A-2 EXPONENTIAL DETRENDING OF DATA POINTS
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[se)

nl='o [F(x + na) 4+ F(x - na)] e-na/)\

F(x) = (A-21)
= -na/ \
2 Z e
n=o
Where the notation is explained in Figure A-2.
The detrended or filtered data F (x) is then given by the relation:
Fq (x) = F(x) - F(x) (A-22)

This type of filtering is similar to an analog electrical high pass filter with the
exception that two sided averaging (both past and future) can be performed on
digital data to remove phase shift characteristics. To demonstrate this effect
consider Equation A-21 in the limit as n—> o and a becomes a continuous variable.

In this limit, Equation A-21 becomes:

FRN

If F(x) is now considered to be a continuous signal of the form sin (277 N. x), then

©
F(x) = 1 /[F (x+aqa) + F(x-a)]e _°/>\dc { A-23)
°

Fq(x) is:

Fd (x) = sin (27 N.x)

( A=24)

I2
'+m—.n_x3

Thus, the detrending filter effects only amplitude of the input and not phase.
Equation A~24 aoffords an insight into the interactions and influences between de-
trending, the weighting constant >\, and frequency. |t can be seen that the ampli-
tude of the detrended function approaches that of the original data for large values

of fL >\ That is, for high frequencies or for broad based exponentials, the detrended
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function is approximately equal to fhe original function and little attenuation
at this frequency is apparent. Conversely, if the product of N A is very small the
amplitude of the detrended function approaches zero and this frequency component
is highly attenuated.

From Equation A-24 the transfer function as a function of frequency N., and

weighting constant Ais:

Amp. ratio = ( A-25)

In practice a finite averaging interval must be used. For this case the trans-

fer function is given by:

[l +e " {277ﬂ>\sin (21Tnn.>\)—cos(2Tr nﬂ)\)}]
(t-e™ [1 + @7 A)2]

Amp Ratio = 1 - ( A=26)
The averaging interval is =n N to n>\, where n is any positive number and >\is the
exponential weighting constant. A weighting over 3>\is reasonable for most practi-
cal applications.

Since the sample length is finite, some attention must be given to those points
for which the averaging interval extends beyond the end points of the data sample.
In order to account for this, the data was extended for a length 3 >\beyond each
of the end-points by mirror reflection. If the original data is defined as F(x) on

the interval (0, L), then this reflection is given by:

F(x - a) =Fla - x) For x=-a <0
( A-27)
Fix + a) =F(2L-X-a) Forx + a >L
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This endpoint reflection is a method of estimating the expected value beyond the sample
length. This estimate is exact for an even periodic function but causes a distort ion near
the endpoints for an odd periodic function. Figure A-3 shows the distortion for a unit
amplitude sine wave which has been detrended with a weighting constant equal to one

tenth the wave length.
0.4 | [ [

0.2

0
—
0.2 —
-0.41
5

sin(2rax) Detrended withx = 0.1

Figure A-3 EFFECT OF END POINT REFLECTION ON DETRENDED ODD FUNCTION

The frequency cut-off or half-power point f1 1/2 is the frequency at which the
P.S.D. of the filtered function is one-half of that of the unfiltered function, and is

defined as a function of >\ by Equation A-28.

I
n = _— (A-28)
/2 2 N (W2=-1) /2

The effect of an exponentially-weighted-average filter on an ideal P.5.D. predicted

by Equation A-29 is shown in Figure A~4. If a trend is contained in the data sample it

P(N)= C(n)2 (A-29)
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is quite likely this trend will increase the estimated P.5.D. at each frequency as
shown by the line marked Undetrended Estimate in Figure A-4. This, in effect,
would raise the estimated value for the surface roughness constant coefficient C.
The two finite data frends shown in Figure A-1 have a P.S.D. estimate similar to
the ideal P.S.D. If a substantial trend such as either of these exist in the data it
might obscure the real data of interest. Thus, before an accurate estimate of sur-
face roughness can be made the data must be detrended. The effect of detrending
on the ideal P.S5.D. is also shown in Figure A-4. Here it is noted that detrending

removes the lower frequencies.

This f igure also indicates the importance of selecting an appropriate exponential
weighing factor >\ Excessively large weighting factors will fail to remove the trend
completely and the resulting estimates of surface roughness will be high. As the
weighting factor is reduced the detrended P.S5.D. approaches the ideal and reason-
able estimates of surface roughness can be made. As the weighting factor is further
reduced, higher frequencies are filtered out, and the estimate of surface roughness
can be contaminated by statistical errors in resolving higher frequencies from digital

data.

Amplitude Probability Distribution

The amplitude probability distribution (A.P.D.) of a continuous random
variable F(x) as given by Equation A-30 defines the probability that F(x) will

exceed the level Y.
X

A.P.D. (Y) = ;i")'; 2—]x $[Fe0> Y] ax (A-30)
LX

where § [F(x) > Y] is a delta function defined by Equation A-31.
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1 if F(x)2Y
S[Fe) > Y] = ( A=31)
0if F(x) <Y

An estimate of the A.P.D. can be obtained from a finite continuous signal by

dropping the limit of Equation A-30 as shown in Equation A-32;
X
A.P.D. (Y) = 2_‘>_< S[Fe0> Y] ax ( A-32)

-X
where 2X is the data length. For a discrete digital data sample the integration in

Equation A-32 is replaced by summation as given by Equation A-33:

N
A.P.D. (Y) = ‘rl“l Z S[F(xi)>Y] ( A-33)
i=1

where N is the total number of data points. Equation A-33 was used to calculate
the A.P.D. of the Ranger VIlI data and the computer program AMPDIS is given at
the end of this appendix. In the preceding section it was shown that the presence
of a trend in the data sample could lead to erroneous estimations of the P.S.D.

It is reasonable to expect that the same is true in the case of A.P.D. Figure A-5
shows the A.P.D. of a linear trend plotted on probability paper. The straight line
in the figure is a plot of a Gaussian distribution whose standard deviation is equal
to that of the linear trend. Figure A-5 clearly shows that the existence of a trend
in the data could indeed lead to misleading estimates of the A.P.D. Thus, as in
the case of the P.5.D., the data must be detrended before an accurate estimate

of the A.P.D. is possible.
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1.5

The effect of detrending on the A.P.D. and the P.5.D. of an actual surface
profile is shown in Figure A-6. This figure shows the A.P.D. and P.5.D. of the
undetrended profile and of the same profile after it had been detrended, with >\'s

of 5 and 2 meters respectively.

Variance and Calculation of C

The P.5.D. of a virgin terrestrial or extraterrestrial surface can be closely

approximated by Equation A-34.
Py (n)=¢C n.—2 (A-34)

The variance of the surface is equal to the P.5.D. integrated over all frequency,

or expressed mathematically

@

VAR = f cn? 4n ( A-35)

(e)

The above integral does not exist due to the singularity at .= 0. If a surface
profile with a P.S.D. given by Equation A-34 is detrended, the P.5.D. of the

filtered function is given by:

c N
Py(0) = - (A-36)

)
@ 7o N)

To show this, consider the P.5.D. defined in terms of the Fourier transform as given

by Equation A=37.
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X
. . -1 2N o
P.5.D. - Limit 1 I [F(x)e t2m *ax |4 = cn-2 (A-37)
X

T X—w X
If the function F(x) is passed through the detrending filter, the filtered function

is given by;

Fix) (A-38)

[I ! (217{11 >\)2]

If this expression is substituted into Equation A-37 in place of F(x), the P.5.D. of

the filtered function is then:

X 2w N 2
Limit | =1 - X
P.5.D. = U x| f F(x) e dx (A-39)
LX

[1 + (ﬁ) }

Since the denominator of the integrand above is inherently positive and independent

of x it may be factored out, so that Equation A-39 may be written as:

i Limit 1 -2 0.x 2
P.5.D. = il
75 Yoo X, F(x) e dx,
A -X
VE D
(A-40)
cn. 2

2.2

[' *Q‘TQ.‘,QJ

The variance of the filtered function can now be written as:
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cn? 4n. C1T2>\

2.2 2

VAR =

( A-41)

Equation A-41 gives the relationship for the variance of the detrended data,
in terms of the filtering constant \ and the P.S.D. constant C. Since variance
can be accurately estimated from a finite amount of data, Equation A-41 s

a good means of estimating the surface roughness coefficient C and thus the

P.5.D.

A.2 Application

In order to show the application of the techniques developed in the preceding
section, some of the available information from the Ranger photographs has been proces-
sed. This processing was not intended to be a comprehensive analysis, but rather a
verification of the techniques developed and allowed a preliminary estimate of the

lunar surface roughness for an input to vehicle dynamic analysis.

A.2.1 Analysis of Jet Propulsion Laboratory Data

(17)

The Jet Propulsion Laboratory has processed and published some
of the available data from Ranger photographs. J.P.L. used the Ranger
television scan lines to determine brightness of the lunar surface. The
elevation height for a matrix of points covering the photographs, was then
determined from this brightness information. A compensation (called a sine

wave rectification filter (SWRF) ), for camera angle was also attempted in

the analysis. The lunar topographical data supplied to Chrysler Corporation
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by the Jet Propulsion Laboratory was the elevation and the brightness print-
outs (with and without (SWRF) ) for the last two P-3 frames from Ranger VIII.
The last frame covered an area of about 13,000 square meters. Estimates

of surface elevation were provided in a 277 x 373 element matrix covering
the surface of this frame. The horizontal distance between elevation points
is .381 meters and the vertical definition was .09 meters. The next to last
P-3 frame covered an area of about 103,000 square meters. It was decided
to use arbitrary profile height traces from these photographs for analysis. Five
data sets were analyzed from the last Ranger P-3 frame and one data set was
analyzed for the second fo the last Ranger P-3 frame. The relative locations
and designation of each of these data sets is shown in Figure A-7. All of the
data analyzed were compensated for the sine wave response fall-off of the
camera (with SWRF). Data Sets 2 and 4 were analyzed prior to detrending

to show the effects of detrending. Figure A-8 shows a plot of the raw data
for trace 2, the computed trend, and the detrended profile. Figure A-9 shows
the same information for Data Set 4. A substantial trend exists in Data Sei 4
and, in fact, in all of the profile traces running parallel to this data set.
Figure A-10 shows the amplitude probability distribution plots for Data Sets
2 and 4 before and ofter detrending. The effects of detrending can be seen
here in Data Set 4 The trend has a significant influence on the data, making
it appear non-Gaussian. The detrended data more nearly approximates a
Gaussian distribution. In each case, the straight line on these plots is that

of the Gaussian distribution calculated from the variance of the actual data.
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The effect of\on the estimate of C for Data Set 4 is shown in
Table A-2. A value of 5 meters for\wcs chosen for the processing of
the Ranger VI data since this value was the largest one effective in de-
trending Data Set 4; which had the most substantial trend. In order to show
the effect of this frequency cut-off on vehicle behavior consider the follow-
ing argument. If Fps.  is the lowest femporal frequency considered to have
any effect on the vehicle's behavior and V), is the highest vehicle velocity,

then

n _ I:Min

“"Min - VMux (A'42)

Where N. 4. is the lowest spacial frequency which will affect the vehicle's
behavior. If 5 meters is then used for A to calculate the half-power point of
the detrending filter (See Equation A-28) and 4.77 meters/second (10 mph)
is chosen as a top speed, this yields a value for Fy,. . of 0.5 Herfz (cps).
This value is approximately one octave below the lowest resonant frequencies
for most vehicles.

The amplitude probability distribution, variance, and standard devia-
tion for each of the detrended data sets were calculated. Figure A-10 shows
this information for Data Sets2 and 4 and Figure A-11 shows the results for
the detrended Sets |, 3, 5, and 6. While the data available is very crude
in a statistical sense it is possible to state that the amplitude probability
distribution for the detrended data is Gaussian within the statistical accuracy

of the data available.
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Table A-2 EFFECT OF >\ ON ESTIMATE OF C

DATA SET 4
7—\;criance‘7 Std. Dev. C
Meters (Mei'ers)2 (Meters) (Merers)2 Cycle/Meter

1.00  0.00129 0.0359 2.61 x 1074
2.00 0.00252  0.0502 2.55 x 10~4
3.00 0.00352  0.0593 2.37 x 1074
4,00 0.00473 0.0688 2.40 x 1074
5.00 0.00615  0.0784 2.49 x 1074
6.00  0.00780 0.0883 2.63 x 1074
7.00  0.00966  0.0984 2.80 x 1074
8.00 0.0117 0.108 3.00 x 1074
9.00  0.0142 0.119 3.19 x 1074
(0.00 0.0171 0. 131 3.47 x 1074
11.00  0.0206 0. 143 3.79 x 1074

The P.S.D. of the lunar data was determined by means of Equation
A-19. Linear and exponential spectral windows were employed for frequency
domain smoothing, as given by Equation A-20 and Table A-1. The linearly

smoothed P.S.D. is given in Equation (A-43).

n+4

2
Py(n.)= L Z (AF 4 Bi2) (A-43)

j=n-4

75



The equation for the exponenhclly smo_ffhed P.5.D.is:

. N\
(o + 624 D (A2 B2y~ V3
PP(n )=t [=n-9 i N
d 'zt -44)

Z . -i/3

Figure A-12 shows the P.S.D. plots of the raw data for Data Sets 2 and 4
with both the exponential and linear smoothing. Figure A-13 shows the P.S5.D.
estimates of all six detrended sets with both linear and exponential smoothing.

It can be seen in every case that the slope of minus two is approximately
satisfied by each of these curves. The effect of detrending can be seen in
some of these curves and is most obvious in Figure A-I13 for Data Set 5. A
value of C was determined for each of these data sets from the variance. A
value of C was also calculated by taking 50 data points from the P.S.D. beyond
the effective cut-off frequency of the filter, and computing this value. Table
A-3 is a summary of the values of C calculated by these two methods. Data
Set 4 was numerically differentiated to obtain the lunar slope information. It
should be recognized that the available data is somewhat crude and numerical
differentiation can lead to large errors. Nevertheless the P.S.D. of the slope
was approximately constant over the frequency range and is shown in Figure
A-14.

Data Sets 4 and 5 are parallel profiles across the surface separated by
the approximate width of a typical MOLAB (2.5 meters). The cross-spectral
density of these two data sets was calculated and is presented in Figure A-15,

This cross-spectral density is normalized in such a fashion that perfect
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Table A-3 VALUES OF C FOR LUNAR SURFACE

DATA SET STANDARD FORMULA VALUE OF C IN METERS

DEVIATION CALCULATED CALCULATED
FROM (o) FROM P.S.D.

Ranger VIII 2 _

J.P.L. -1 o = .077 C=20" 2.4x 1074 8.01x 1074

Last P-3 Frame 51T 2

Ranger VIII

J.P.L. -2 o = .078 Q:2°'2 24¥!0-4 65-3!.!!0-4

Last P-3 Frame 50 2

Ranger VIII 2 -4 . -4

J.PL-3 o = .080 C= 2¢ 2.6 x 10 2.49 x 10

Last P-3 Frame 5 72

Ranger VilI ) -4 -4

JP.L. -4 o = .078 Cz 29 2.4x 10 3.67 x 10

Last P-3 Frame 5 2

Ranger VIII 2 4 -4

J.P.L.-5 o = .092 c=2° 3.4x 10 3.48 x 10

Last P-3 Frame 5 w2

Ranger Vil 2

JP.L. -6 o = .190 C=2° 4.3x 1074 8.35 x 1074

Next to Last 17.1577 2

P-3 Frame

Ranger VIII

I — c-_-01l . 2.8x 1074

Slope 477 2

Ranger VI -4

U.s. G.s. o = .052 C=_Blo” 53x100%  cmmme--

Last P-3 Frame 2% 2
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correlation would give a unit co-spectral density. It appears from these plots
that the correlation between traces even this close together is negligible.
There is no substantial trend of correlafion. between the plots, and the noise
which does exist is considered to be.due to statistical errors. While this data
is not conclusive it points toward the validity of using separate members of
the ergodic set predicted by the P.S.D. of one trace as inputs to the two sides

of the vehicle.

A.2.2 Analysis of United States Geological Survey

Just prior to the end of this contract digital slope information from
the U. S. Geological Survey was made available. This information was ob-
tained from the last partial P~3 camera frame of Ranger VIlI. One set of slope
information across the lunar surface was processed to give the amplitude proba-
bility distribution, This plot is shown in Figure A-16. It can be seen that the
slope distribution is near Gaussian. A valuve for the constant C was computed
from the variance of the slope information and is presented in Table A-3 to-

gether with estimates of C from the J.P.L. data.

A.3 Digital Computer Programs

Several digital computer programs were written to process the lunar data. In
each case these are very direct approaches to the digital technique described in Sect-
ion A.1. A list of each of the programs used is given on the following pages. The
language (BASIC) is an elementary algebraic language used on a General Electric

235 computer in the time sharing mode. A description of the language is given in
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Reference 18. The language is a very descriptive one and should allow analysis
of these programs even by non-experienced computer programmers.

The first program listed, DETREN was developed to.allow detrending of
the raw data.

The second program, AMPDIS computed the average, maximum and minimum
about the average, amplitude probability distribution, variance and standard deviation
of the input data.

The third program listed, FORSER, computes the Fourier coefficients of the
input data and then uses these coefficients to reconstruct the input data for valida-
tion. It also compares the reconstructed data to the input data and computes the
percent error of the reconstruction.

The last program listed, FOR 5, computes the Fourier coefficients and their
magnitude squared. It then smoothes the squares of the magnitudes in a linear and

exponential fashion and prints out the smoothed values as the P.S.D.
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DETREN

1 REM 3BRUCE VAN DEUSEN T'IE LINE 860 EXT 24
2 REM XXX

10

80 LET E=0

90 LET P=0

100PRINT9003* DATA"S

110 DIM F(500),K¢200)

120 LET D=2

130 READ N,H»S»L

140 FOR X=1 TJ N

150 READ F(X)

160 IF S*X/L>3 THEN 200
170 LET K(X)3EXP(=-S*X/L)
180 LET D=D+K(X)*2

190 LET E=E+}

200 NEXT X

210 FOR X=1 TO N

220 FOR Y=0 TO E

230 LET Z=X+Y

240 IF Z<=N THEN 260

250 LET Z=2#*N-Z

260 LET J4=X-Y

270 IF W>0 THEN 290

280 LET wWz=ud+]

290 IF Y<>0 THEN 320

300 LET M=2%F(X)/D

310 GOTO 330

320 LET M=M+(FC(AI+FCZ)I*K(Y)I /D
330NEXT Y

340 LET K=F(X)=-M

350 LET K=10t(=-5)*INT(K*10153)
360 IF P=5 THEN 400

370 PRINTK3'"™»'3

380 LET P=pP+1

390 GUIJ 430

400 PRINT K

410 PRINT 900+X/63"DATA*S
420 LET P=9

430 NEXT X

9999 END
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AMPDIS

1 REM BRUCE De VAN DEUSEN=CHRYSLER CORP-DETROIT--VE6-4100--EXI24
2 REM XXX

S GO TO 9000

10 LET A=0

20 LET V=0

30 DIM F(900)

40 READ NoH

SO FOR X=1 TOo N

60 READ F(X)

70 IF X<>1 THEN 100

80 LET Q1=FCX)

90 LET Q@2=Q1

100 LET A=A+F(X)

110 IF FC(X)>Q1 THEN 130

120 LET 31=F(X)

130 IF F(X)<@2 THEN 150

140 LET Q2=F((X)

150 NEXT X

160 LET AsA*H/N

170 LET Ql=H*31-A

180 LET Q92=H#Q2-A

190 PRINT *AVE="A,"MAX="32,'"MIN="u4l
200 LET L=32

210 IF 32>-31 THEN 230

220 LET L=-Q1

230 LET Ki1=0

240LET K2=20

250 IF L>»]1 THEN 290

260 LET L=10=+L

270 LET Kil=Kl+1

280 GY TY 250

290 IF L<10 THEN 330

300 LET Lz=elxL

310 LET K2=K2+1

320 GO T 290

330 LET L=1+INT(L)

340 LET L=L*(10tK2)% (.1 tK1)

350 PRINT

360 PRINT*AMPLITUDE DISTRIBUFIION"
370 PRINT™LEVEL® ' +0" "+ 01 4L, +"e02%L>"+".03%L
375 PRINT

380 FOR Y==L TO +.96%L STEP L/25
390 LET Cl=0

400 LET C2=0

410 LET C3=0

420 LET CA4=0

430 FOR X=1 TO N

440 IF Y<>-L THEN 482

450 LET FC(X)=H*F(X)-A
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470
480

AMPDIS (CON'T.)

LET Vav+F(X) 2
IF F(X)<Y THEN 560

490LET Cl=Cl+1

500
519
529
530
540
550
5692
570
580
599
600
8800
9000
90193
9029
9230
9040
9050
9060
9070
9080
9090
9100
9110
9998
9999

IF F(X)<«01*L+Y IHEN 560
LET C2=C2+1
IF F(X)<Y+.02#L THEN 560
LET C3=C3+1
IF F(X)<Y+.D03%L THEN 5690
LET C4=CA4+1
NEXT X
PRINT Y»C1/N2C2/NsC3/N,C4/N
NEXT Y
PRINT
PRINT *VARIANCE='""V/N,"STANDARD DEVIATIJIN="SJAR(V/N)
ST9P
PRINT'"IHIS PRIGRAM CALCULATES IHE AVERAGE,MAXIMJIMLMINIMUM,'
PRINT'"(AB0JT THE AVERAGE) AND VARAINCE JF NUMERICAL DATA PLACED"
PRINT'IN DATA STATEMENISe IT ALSO CALCJULATES THE AMPLITUDE®™
PRINT'"PRIBASILITY DISTRIBUTIINe THIS IS THE INTEGRAL DISTRIBUTION"
PRINT"THAT IS THE NUMBER OF DATA PJINTS ABOVE LEVEL (L) V5 <L)
PRINT"THE LIMITS ARE AUTOMATICALLY CALCULATED AND 100 EQUAL"
PRINT'INTERVALS ARE CHOSEN FOR PLOUITING ON PROBABILITY PAPER"
PRINT™IN ORDER TJ RJN PRINT (5 DATA NsH) WHERE N IS THE NUMBER'"
PRINTOF DATA POINTS AND H IS A MJULTIPLICATION OR SCALE FACTOR"
PRINT"I+Ee IF THERE ARE 200 DATA POINIS AND NO SCALING IS DESIRED"
PRINT*PRINT S DATA 200.1 «=--=-THEN LOAD DATA IN DATA*
PRINT"STATEMENTS STARTING WAITH STATEMENT 700 =-~AND RUN"
DATA 1
END
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'FORSER

1 REM BRUCE De VAN DEUSEN=CHRYSLER CORP-DETROIT--VE6~4100 EXT 24
2 REM XXX

10 GO TO 590

90 LET A=9

100 DIM F(€351)5,5S¢351),C(351),A(150),B(C(150)
110 READ NaoH,J

120 FOR X=1 TO N

130 READ F(X)

140 LET F(X)=H*F (X)

150 LET AsA+F((X)

160 LET SCX)=SIN(C3.1415926%X/N)

170 LET C(X)=CUS(3.1415926*%X/N)

180 NEXT X

184 LET C(0)=]

186 LET S5¢03=0

190 PRINT *FQURIER SERIES COEFFICIENTS"
200 PRINT'HARMINIC*," A'",* B","MAG SJUARED"
210 PRINT' 0"sA/N»s" 0*s(A/N) 2

220 FIR Y=1 T9 J

222 LET A(Y)=0

224 LET B(Y)=9

230 FOR X=1 TO (N+1)/2

240 LET W=N+1-X

250 IF W=X THEN 300

260 GUSUB 490

270 LET ACY)I=ACYI+C(ZI®(F(XI+F(wW))

280 LET BCY)=BCY)+I4S(ZI*(F(XI=-F (W)

290 GYIV 310

300 LET I=(-1)rY

301 LET ACY)=ACY)+I*F (X)

310 NEXT X

320 LET ACY)=ACY)*2/N

330 LET BCY)=B(Y)*2/N

340 PRINT YsACY)oBC(Y),ACY)t2+B(Y) 2

330 NEXT Y

360 PRINT "RECONSTRUCT DATA 1 O] 0'3

370 INPUT M

380 IF M=0 THEN 480

390 PRINT "POINT NUMBER",'"IRJE VALUE'",*"COMPUTED VALUE'","PERCENT EXROR"
400 FOR X=1! TO N

410 LET P=A/N

420 FOR Y¥=1 79 J

430 GUISUB 490

440 LET P=P+ACY)*C(Z)+A*3(Y)*5(2)

450 NEXT Y

460 PRINT XsF(X)sP2sABSC(F(X)=P)*100/F (X))
470 NEXT X

480 STOP
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FORSER (CON'T.)

490 LET Z=Y*(2#%X-1)

S00 LET 3=1

510 IF Z<=N THEN 580

520 LET Z=2%N-Z

530 LET J=-1#%3

540 IF Z>0 THEN 589

550 LET Z==-Z

560 LET 3=-1x%3

570 GITY S10

580 RETURN

590 PRINT"PRIGRAM PRINTS FOJRIER SERIES COEFFICIENTS FROM DATA'"
600 PRINT"PRINT (10 DATA NsH»J) WHERE N IS THE NUMBER OF DATA"
610 PRINT'"PIINTS,H IS A SCALE OX MJLTIPLCATION FACTOR FOR RAW*
620 PRINT"DATA AND J 1S THE NUMBER OF HARMONICS DESIRED=====- e
630 PRINT"LOAD DATA IN DATA STATEMENIS 700 AND FOLLOWING--AND RUN"
9998 DATA 1

9999 END
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FOR 5

1 DATA 348,150

80 LET I=0
100DIMF(352),5(351)5C€351)>,AC15D)
110 READ N»J

120 FOR X=1 TO N

130 READ F(X)

160 LET S(X)=SIN(3¢1415926*X/N)
170 LET CCX)=COS(361415926%X/7N)
171 IF 2xX<>N+1THEN]80

172LET I[=F(¢(X)

180 NEXT X

184 LET C<0)=1

186 LET S¢0)=0

200 PRINT"HARMONIC'",'" A'",' B'"»"MAG SQUARED*
220 FOR Y=1 TO J

221LET I=-1x]

222LETK=1

224LETL=0

230F0RX=1 TON/2

240 LET W=N+1-X

2411FY<>1 THEN490
242LETA=F(X)+F (W)
244LETFC(AIZF(X)=-F (N)
246LETF(X)=A

490 LET Z=Y*(2%X~-1)

500 LET 3=}

510 IF Z<=N THEN 580

520 LET Z=2%N-Z

530 LET Q=-1%7

540 IF Z>0 THEN 580

550 LET Z=-Z

S60 LET 3==-1%Q3

570 GJITO 510
SBOLETK=K+C(Z) *F (X)
SI9OLETL=L+2%S(Z)%*F (W)

600NEXTX
60SLETACY)=(KkK+L L) *4/ (N*xN)
610PRINTY»2%xK/NNN,2%L/N>ACY)
620NEXTY

630PRINT"CY/CM"H, "LINEAR","EAA"
640LETQ=0

645LETR=2

650FJRX=1TO9

660LETIA=I+ACX)
6TO0LETICXI=ZEXP(~X/3)
680LETR=R+2*%Q(X)

6I90NEXTX

700FJQRX=5TJJ=-5
TIOPRINTX/(N*38e¢1)5N4381%3/18,
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FOR 5 (CON'T.)

T720LETT=X+5S

730LETU=T=~9
T4AOLETA=3+AC(TI-ACY)
7501FX<10THENSB20

760 IF X>J=10 THEN 820
T6SLETA=2%A(X)
770FORY=1T0O9

TISLETZ=X+Y

TITLETG=X~Y
TBOLETA=W+ACYI*(A(CZI+ACG))
TIONEXTY
SOOPRINT(N®38e1%4)/ (2%R)
g10GUTU830

820PRINT" '
830NEXTX

9998 DATA 1

9999 END
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YIELDING SURFACE MODEL

By: R. F. Hughes

Surface deformation can influence vehicle motion. The discussion which follows is
concerned with the formulation of a dynamic yielding surface model. It is recognized that
the representation presented is grossly approximate since a comprehensive theory for dynamic
vehicle-soil interaction does not exist. However, the essential features of soil behavior are
believed to be adequately described for estimating surface-layer property effects on vehicle
motion. Only a motion caused by an unbalance of forces in the direction perpendicular to
the soil surface is under examination.

Investigations of soil mechanics demonstrate a functional relationship between foad
penetration and soil response. Theory suggests that a portion of the reaction is dependent on
the rate of penetration. This phenomenon is a damping action associated with the propaga-
tion of stress waves throughout the soil and soil viscosity in the form of friction or shear.
Therefore, it is postulated that the dynamic soil reaction force acting on a vehicie may be

represented by Equation B-1.
Ry= 1, (Z) +,(2) (B-1)

Ry is the soil reaction force, f;(Z) is a function dependent on soil penetration (Z), and

@, (Z) is a function dependent on soil penetration rate (Z ).

The contact surface between the soil and the wheel is assumed to be a flat plate of fixed
shape and area "A*. From Figure B-1, the equation describing the wheel motion on a yielding

surface is:

mZ+ g,(Z) +§,(2) = F,
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Figure B-1l WHEEL-SOIL INTERACTION MODEL

where m, is wheel mass and F,, is the vertical force acting on the wheel. It now remains to

determine the functions @ (Z) and @, (Z) from theory and the property of soils.

B.1 The Function @ (Z)

Data from standard plate penetrometer tests of soil which are normally
reserved for assessing vehicle trafficability are considered applicable to represent
ﬂl (Z ) since this term as defined is time independent.

The pressure-sinkage relation which has received the most attention in

recent years is that due to Bekkerlg. The Bekker relationship is given by the

equation: "
P= (kﬂ + k. /b)Z (B-3)
where P = applied pressure kﬂ = frictional modulus of sinkage
b = least dimension of ke = cohesive modulus of sinkage

loading plate area

n = empirical exponent z sinkage

95



A serious deficiency of this relationship is the dimensional dependence of kﬂ'
and k_ on n. Wismer and Smith(20) have experienced difficulty in obtaining
consistent values for kﬂ' k. and n. Reece(2|) deplores the lack of a sound
theoretical basis for Bekker's equation and recommends a new expression based

on the bearing capacity theory of soil mechanics.

In view of the above arguments a relation due to Assur(22) has been adopted
to represent soil deflection under load. Under the pressure of a rigid flat plate a

soil will initially settle proportional to load.

P= K, Z (B-4)

K, is the coefficient of subgrade reaction. If the load is continuously increased,
the soil eventually exhibits a deviation from Equation B-4. According to Assur

this deviation may be categorized into one of three fundamental traits shown below.

| Fluidization P=KSZ[I—(KSZ/Pm)2 +2(KSZ/Pm)4+....] (B-5)

I 1 Compaction P=K,Z/(1- ZZ/Z?“) (B-6)
11 Collapse P-K,Z/(1+ 2%/Z2) (B-7)
where Z = plate sinkage, P, = maximum bearing strength,

P - bearing pressure, Z., = sinkage af maximum bearing strength

Ks = coefficient of subgrade
reaction.

The characteristics of each type of deformation Z related to bearing pressure P is

presented in Figure B-2. Category 1 ic tha most common soil reaction and is
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representative of clay but not restricted to clay. It indicates a progressive deteri-
oration of elemental particle bonding with load. Snow and very loose soils have
been observed to respond according to Category Il where bond strength increases

with load. Category lll, which is exhibited by densely compacted sand, is a typical
behavior for a crust over a soft underlayer and predicts a collapse after a finite maxi-
mum bearing pressure. Figure B-2 illustrated soil reaction to continuous increasing
load. Figure B-3 illustrates soil reaction to repetitive loading with the maximum
load increasing with each cycle. A permanent plastic deformation of the soil remains
following each Joading (AC, CE, EG, etc.). The soil recovery (BC, DE, FG, etc.)
may be approximately described by a series of parallel straight lines which suggests
Hooke's Law. The initial load cycle may be conceived as a consolidation plus

elastic compression, AB, followed by an elastic recovery, BC. Equation B-8 is

an expression for recovery from the theory of elasticify.(zs)
P = C2E Z (B-8)
(1-v9 A A
Where P = bearing pressure
E = soil modulus of elasticity
A = area of load bearing plate
C = dimensionless coefficient dependent

on plate shape

1) = Poissons ratio of the soil
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P- Bearing Pressure —% ,
Z

<«— 7 - Piate Sinkage

PRESSURE- SINKAGE CH ARACTERISTICS

Figure B-2
OF SOIL ACCORDING TO ASSUR

Pressure —>

<«— Sinkage

Figure B-3 sOlL RESPONSE TO REPETITIVE LOADING
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Table B-1 presents values of the coefficient C related to bearing plate geometry.

1
Table B-t. VALUES FOR C FOR EQUATION B-8
PLATE GEOMETRY PLATE CONDITION
Rigid Flexible
Circle 1.13 1.04
Square 1.08 1.06
Rectangle
(length to width ratio)
3/2 1.09 1.07
2 1. 10 1.09
3 1.15 1.13
5 1.24 1.22
10 1.41 1.41

Since | (Z) is a force equal to P times A, it has the following form:

Consolidation and Elastic Compression

B, (2) for fluidization is KZA[1- (K Z/P)? + 2(K Z/P)* + .| ®-9)

or for compaction is K, ZA/(1 - ZZ/ZmZ)

or for collapse is K ZA/(1 + 22/ Zn21)

Elastic Recovery

9, @) = CEZ NA
(1-V?)
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B.2

The Function @, (Z)

An expression for g, (Z) of Equation B-1 has been obtained from a model
illustrated in Figure B-4 consisting of a vibrating disc in surface contact with an
elastic, homogenous, isotropic, semi-infinite medium. Although this theoretical
model is ideally elastic, radiation damping exists since energy is transported from
the disturbance source throughout the medium via pressure waves and unavailable

for resonant re-enforcement of the disc motion. This model contains no internal

ng Fo ¢!

vZ

Figure B-4 WEIGHTLESS RIGID DISC
SUPPORTED BY ELASTIC MEDIUM

damping which is related to the friction between soil particles or the process of

soil shear. Experimental evidence indicates friction or shear is expressed by the
24) (25) (26)

hysteresis in the stress-strain cycle( (23) ( . Since hysteresis is believed to

be adequately accounted for by the form selected for ﬂl (Z), no attempt is made

to include this effect in ﬂz (Z).
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The above model has been the basis for the analytical study of vibrating
foundations. The theory dates from the work of Reissner(27), 1936. A more recent
development is accredited to Sung(zs), Bycroﬁ'(29), Hsieh(so) and Lysmer(3]).
The brief summary which follows is due to Hsieh(3o), and Hall and Richort(24).

The vertical displacement Z of a weightless rigid disc resting upon an elastic

semi-infinite medium and submitted fo a periodic force F = F e'®t (see Figure

B-4) is given by:

F iwt
Z=-__° |f +if,)]e (B-13)
2
Gr, [ ! ]
where Z = displacement

Fo = amplitude of periodic force

G=E/2(1 +V) = shear modulus of medium

foof 2 = dimensionless functions dependent on Poissons ratiol) and ag
r = disc radius (for circular disk)
a, = dimensionless quantity - W ro’\l /G

= mass density of medium

o = forcing frequency (radians/sec)

Differentiating Equation B-9 with respect to time yields

: WF iwt
Z = - _9° |if{-f,le B-14
G fo [l I 2] ( )

Equations B-13 and B~14 may be combined to yield:

. WF .
WZF-Zhy =m0 [# + 2leiwr - LF [2 4 ¢] \8-15)
o]
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and therefore,

s ; . f
F= + er > 22 ] Z —Gro[—-é—l—z—] 4 (B-Ié)
2+ £ f+ 5
. f2 i:I
Setting F, = —— and Fy =- - (B-17)
(2 4 f2)a, (] + £,
F:/\JG?‘rg F, Z + Gr F Zz R (B-18)

where R is the reaction of the elastic medium.

Bycroft's calculated results for f| and f; related to Poissons ratiol) and

gy = Wry /\l(’/G are presented in Figure B=5. From these graphs, Hsieh has

determined approximations for Fj and F, sufficiently accurate for practical calcu-

lations. These expressions are:

2
FI= S = €1 9% F2: b, + bja, (B-19)

where the values for the coefficients Cor €1 bo’ and bI are contained in
Table B-2.

Atw = o, g  is zero and the second term of Equation B-18 is the elastic
reaction to a rigid disc under static Joad. From Toble B-1, C =1.13= 2/

for a circular plate and therefore

5@ - 2 EZNA 21021 +V)GZ 4G, Z
N 0-v2)  (-v%H  g-7v)

(elastic)

Thus Fy= 4/(1 - V) for a, = 0O which agrees with Hsieh's numerical values

tabulated in Table B-2. Therefore ¢ = 4/( |1 -V).
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Figure B-5 BYCROFT'S DISPLACEMENT FUNCTION

VIBRATING RIGID DISC SUPPORTED BY ELASTIC MEDIUM

(Ref 32)
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Table B-2. HSIEH'S VALUES FOR F,, F2

0ag< 3/2

FI = cg-cjag

Fy = by + byag
POISSONS RATIO Fy Fy
1/ R <, bo bI
0 4.0 0.5 | 3.3 0.4
1/4 5.3 1.0 | 4.4 0.8
/2 8.0 2.0 | 6.9 0

Hsieh's expression for F | is of the form ¢ - ¢ cg where g, = 4/(1-1)

and ag w ro’\] @/ G . Substituting these values into Equation B-18 yields:

— 2.2
2 * 4 Clw roe -
Neg 2F 2 + 61 (125 - - ) z=F (B-21)

Noting for a periodic motion of frequency W that Z = ~ w2z Equation B-21

~ can be rewritten as:

.o d . 4 G
(crprl) Z +Ve 2 F, 2 +(l_r°)Z:F (8-22)

v

The term ¢ 4 rg in Equation B-22Z appears as an effective mass for the soil

and represents a retardation to disc motion related to the inertia of soil in proxi-

mity to the disc.
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Accepting a correspondence between soil reaction to the vibration of a
foundation footing (disc) and soil reaction to the dynamic motion of a vehicle

wheel, expressions for ﬂ2 (Z) and soil effective mass m,, from Equation B~22 are:

SOIL REACTION RADIATION (B-23)
FUNCTION DAMPING

SOIL EFFECTIVE
MASS INERTIA (B-24)

3/2
m — [o} e(__A_)

e { n
For wheel-soil interaction, the surface contact dimension r of the disc theory

1/2 . .

has been generalized to [A/‘n] . The factor by + b, a, is the Hsieh repre-
sentation of F2 where the coefficients b_ and b are dependent on Poissons rafio V.
It is seen that @, (Z) varies with the frequency of wheel motion through the para-
meter a,. For most applications, however, it can be shown that the product b a,

may be neglected with respect to the value b_. For example, at the wheel resonance

of a typical vehicle (10 cps),

@roby 10cycle, 2w , 20cm x 0.8

1% = NG/ P sec cycle 5000 em/sec = 0.2

In this case for values of b_ from Table B-2, b; a, Kb, -

B.3 Assembling the Model

The various terms can now be collected and substituted into a form of

Equation B~1 modified by the existence of a soil effective mass (Relation B-24).
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meZ + CoZ + P(Z, Zpnay) Z =F, (B-25)

The form of Equation B-25 is similar to a mass-spring-damper system as shown

in Figure B-6.

¥ Fv
me _Tz_

$(Z,Z max) t;‘_l Ce

T 77777777777,
Figure B-6 SOIL MODEL

The soil “spring rate" #(Z, Z_, . ) is a complex non~linear function which in--
cludes hysteresis and the effects of soil shear. The "damper" has the form of

a linear "viscous" damping coefficient and represents the energy dissipation due
to radiation damping from elastic theory.

The procedure for determining @ (Z, Z . ), C; and mg for simulation in
an analog computer model is summarized on the following page. Information on
properties of earth soils E, U, e from Reference 23 is presented in Tables B-3,
B-4, and B~5. Values for K5 and Z; or P are normally obtained from standard
plate penetrometer measurements of soil which record sinkage versus pressure,
plate shape and size(ZI) (33 ). In the case of extraterrestrial studies, it might
be desirable at the present time to assign a range of arbitrary values and note

the effect on computer prediction of
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SUMMARY OF PROCEDURE

Soil Property
STEP Required Reference

. Select Vehicle-Soil Footprint === ____

(Area A)
2. Select Coefficient "C*  ccemea Table B-1
Z
3. Compute @ (Z, Zmax)= _glz—()_ (Recovery) E, 1/ Equation B-12
z
4. Compute g (Z, ZmQK)= M (Consoli— KS’ Zm, or Pm Equc’rion 8-9, B-10
Z dation) or B-11
5. Select Coefficients by, bl 1% Table B-2
z
6. Compute Cg = ﬂz (z) E,V, ¢ Equation B~23
Z
7. Select Coefficient <, % Table B-2
8. Compute mg ¢ Equation B-24
Table B-3. YOUNG'S MODULUS E
SAND 7 “E 2 *__- T o E .
(Grain size, mm) k g/ em SOIL TYPE k g/cm2
1.25-1.55 450 Plastic Silty Clay with Sand 310
1.00 - 1.25 520 Saturated Silty Clay with Sand 440
0.60 - 0.80 620 Dense Silty Clay with Sand 2950
0.35-0.60 480 Medium Moist Sand 540
0.30 -0.35 480 Gray Sand with Gravel 540
0.20 - 0.30 620 l Fine Saturated Sand 850
Medium Sand 830
Loess 1000 - 1300
Loessial Soil 1200

* Tabulated data and units are from Reference 23.
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Table B-4. POISSONS RATIO

Clay .50

Clay with 30% Sand .42

Sand

.30to .35

Table B-5. DENSITY €

SOIL TYPE kg sec2/cm?® SOIL TYPE kg sec2/ cm?
X 1076 * x 10-6%

Moist Clay 1.80 Fine Grained Sand 1.65

Loess (Natural Moisture) 1.67 Medium Grained Sand 1.65

Dense Sand and Gravel 1.70 Medium Sized Gravel 1.80

* Tabulated data and units are from Reference 23.
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APPENDIX C

VEHICLE MODELING
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C.2

VEHICLE MODELING

By: J. M. Sneyd

Introduction

The traditional technique for the mathematical representation of a vehicle and its
suspension system is fo use a lumped rigid mass model with visco~elastic interconnections
between the elements. At best, the model is an approximation of the physical system;
this is due either to the shortcomings of the mathematics employed or the limitations im-
posed due to computing equipment. In establishing a model the above limitations must
be kept in mind. To serve its purpose, however, the model must characterize the import-

ant features of the various motions and their intercouplings.

Requirements of the Mathematical Model

The investigation of the limiting conditions dictate that the model must at least
include vertical translation, roll and pitch rotations for the vehicle body. From the
standpoint of the vehicle model, it will be assumed that only a point contact exists at
the wheel-surface interface. In references 34 and 35 it has been shown that under some
conditions of speed and number of wheels a point contact is a valid assumption. The models
chosen for examples of modeling techniques will be of two types; a solid axle model and an
independently suspended model. Two variations for the independently suspended wheel are

also considered; one with a trailing arm and one with a lateral arm.
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Since the gross motions are the main concern the vehicle body is taken as a
rigid frame. Articulated vehicle bodies have been mentioned in much of the litera-
ture. Although these body types are not considered here, the techniques discussed may

be easily extended to include these configurations.

Approach to Derivations

The equations of motion for the various mass elements making up the vehicle
system will be derived through Newton's second law (F = ma). Intercoordinate trans-
formations for successive rotations will be defined in terms of Eulerian angles, using
matrix notations for simplicity. First, a general case will be considered, then several
example configurations will be discussed, followed by some considerations for simplifi-~

cation and linearization.

General Case

A six dimensional (three transiation and three rotation) right hand Cartesian co-
ordinate system is employed. The space fixed system (X, Y, Z) has the X axis horizontal
with the positive direction along the vehicle body (statically ) pointing to the rear. The Y
axis is vertical with the positive direction upward, and the Z axis is perpendicular to the
other two with the positive direction to the left of the vehicle. The body or mass fixed
systems (g , g ' ) in the undisturbed condition has the (; ) axis parallel to the X axis,
the (?) axis parallel to the Y axis and the () axis parallel to the Z axis. The trans-
formation equations between space and body fixed are written with the order of rota-
tions being yaw (angle @), pitch angle i), and roll (angle 8) from the space fixed to

the mass fixed coordinates (See Figure C~1).
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Figure C-1 ANGULAR ORIENTATION BETWEEN SPACE FIXED
AND ROTATING COORDINATE SYSTEMS
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The transformation matrix is given in Equation C-1

X| | cocy - CESYCO +  SPse CosY Se + SECo €
Y| < sy Cy Co -Cyse ~ (C-1)
Z| |-sgcy SESYC 4+ CPSO  -SPSYse + CPCe n

Where C has been written for cosine and S has been used for sine. Let S represent
the space fixed vector (column matrix), B represent the mass fixed vector, and (M)

be the transformation matrix. Equation C-1 can then be reduced to Equation C-2.
S=(MB (C-2)

The components of angular velocity about the mass centered coordinates are defined

in Equation C-3.

0 + gy

geyco + Yse (C-3)

£ &8

- pcyse + yco

A set of equations such as Equations C-2 and C-3 can be written for each mass element
in the system. [f each mass element is considered to have complete freedom of motion
then transformations (and angular velocities) for each mass can be denoted by equations

similar to C-2 (and C-3 ), with the addition of subscripts, for example

S, = (M])B, (C-4)

where (M) has the same functional relationship as shown in Equation C-1 with a

different angular measure. The transformation equations (Equations C-2 and C-4)

113



define the spatial orientation of each mass centered coordinate system. Since the
space fixed system for each mass element is taken as parallel, the orientation of one

mass centered system with respect to another is determined by equating the two;

(M)B =(M,)B, | (C-5)

or this may be written
-1
B =(M)" (M;)B, (C-6)

where (M )-I indicates the inverse, or since this is an orthogonal transformation, the
transpose of (M ).

Forces and moments between the various mass elements depend upon the rela-
tive displacements (for spring or stiffness elements) or velocities (for damping elements)
at the attachment points in each mass element. Stiffness elements that are not co-
linear with their centers of mass are affected by some component of the angular velocity
or angular displacement. For these stiffness elements the relative velocities at the
extremities must be used to determine the forces generated (angular displacements are

not commutative). The total space fixed velocity of a point in a mass element is

S, = S+ (Wr (C-7)

where S is the total space fixed velocity of point a in the vehicle body, S is the
column matrix of the space fixed transiational velocity at the center of gravity, (W)
is the angular velocity matrix (defined in Equation C-8 ), and r is the radius vector

from the center of gravity to the point a.
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0 - 7y

n £4
W) =| 0 -, (C-8)
-Cg w§ 0

The opposite end of the stiffness element (one end of which is attached to the body
at point a) at point o in another mass centered system (subscript 1 ), has a total

space fixed velocity given by Equation C-9.

S =S+ W) (C-9)

at

The difference (Equation C~7 minus Equation C-9 ) is the total space fixed velocity
of end one with respect to end two of the stiffness element. Transforming this dif-
ference into mass centered coordinates and pre~multiplying by a stiffness matrix of

the form

C 0 0
§
K= |0 C, 0 (C-10)
0 0 o

determines the mass centered force components in the three orthogonal directions.

FzKM) T (s,-5 ) (C-11)

2.8

Moments about the mass centered coordinate system are found by pre-multiplying by
a position matrix as given in Equation C-12 . (The position matrix is formed in a

manner analogous to the angular velocity matrix C-8 ).
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C.5

0 -Z, Y,
g = | Zg 0 ~Xq (C-12)
Y, X 0

This gives for the moments about the mass centered system

T=r, F (C-13)

a

In the above treatment the implicit assumption has been made that during the
deflections the stiffness elements remain parallel to their static orientations. For
rather small deflections this assumption holds, but if relative deflections between the
various mass elements are large this assumption becomes invalid. Also, each mass

_element is considered to have freedom of motion in all axes. In those instances where
the motion of a mass element is linearly related to the motion of another mass element,
a constraining equation can be written. Each equation of constraint reduces by one
the number of degrees of freedom for the total system.

In the following sections different versions of the "typical* vehicle will be

examined to indicate how these techniques can be applied.

Solid Axle Model

A rigid framed vehicle with four wheels and two solid axles is now consid-
ered. Atftention is confined to motions in the X, Y plane making the assumption that
the yaw and lateral translations are zero. Figure C-2 is a skeleton drawing showing
only spring stiffness elements. Stiffness elements attached to the vehicle body at points

a, b, ¢, and d and to the two axles at points &, p , Y, and § are shown as the body
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Figure C-2 SCHEMATIC OF SOLID AXLE VEHICLE MODEL
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suspension system.

The wheel rates are represented by stiffnesses connecting the hub

of each wheel to the surface. Also indicated in the figure are the various coordinate

systems (i.e., spaced fixed and mass centered systems). It is assumed that the stiffness

elements are attached to the two axles in such a way that moments about the roll and

pitch axes are zero. These assumptions reduce the number of degrees of freedom to seven:

body vertical translations, body roll, body pitch, plus vertical translation and roll for

each axle.

Equation C-14.

Xn Yy
Y |=| Sy
z, 0

-syca,

The transformation matrices for the three mass elements are given in

Sy se,. £,
-cyse, Cn
SQ’] Cen ,7 n
n=1,2,3

cycs, (C-14)

where yaw has been assumed to be zero.

The orientation between the axle mass systems and the body mass centered system

is given in Equation C-15

0 0 &m

C Bm-8;) -S06,-91)||Gn (C-15)
S (6m - 6,) COm -9 | Nm

m=z23

The angular velocities about the body mass centered system are given in Equation C-16

Wg; = Y50,

(C-16)

CA)”] = llJCBI
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The axles have rotational freedom about the roll axis only. The angular velocities about

the pitch and yaw axes are related to the body mass as shown in Equation C-15

e = Wey C(8,-8) + oy 58, -6))

(C-17)

- - -
Wym ="741 S8y, 8,) + oomC(em 91)
m = 2, 3

From this set of defining equations (Equations C-14 through C-17) the forces and moments
acting on each mass element can be derived. Equating these forces and moments to the

inertial forces establishes a set of seven simultaneous second order differential equations.

C.6  Independent Suspension Systems

A sketch of the left front wheel and accompanying suspension system is shown
in Figure C-3. For this model lateral translations and yaw rotations are again taken to
be zero, and the wheel is assumed to have freedom only in the roll direction (rotation
about the ? axis). Allowing the vehicle body to have freedom in vertical translation,
roll, pitch rotations, and each wheel in roll only, results in a seven degree of freedom
system. The differential equations for this system are similar to those for the solid axle
mode| with the additional condition that the motion at the wheel pivot point (point b in
Figure C-3 ) is constrained. This constraining equation is written by equating the total
space fixed displacement of point b as measured in the body centered system to that

measured in the wheel centered system (Equation C-18).
Sl + (Wl)rl = 52 + (W2) rp (C-18)
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where S_ is the space fixed translational velocity, (W, ) is the angular velocity matrix,

and r,, is the radius vector from the center of gravity to the pivot point.

A second example of an independently suspended wheel is shown in Figure C-4.

Here there is a trailing arm suspension, providing freedom of rotation of the wheel mass

about the pitch axis. If the order of the successive rotations are held in deriving the

Eulerian angles (that is yaw, pitch, then roll ), then the defining equations for the

coordinate transformations are given in Equation C-19 .

y CYCly,-y)
| sws Wa -y co
SLIJC(LIJn_LIJ)
Y, | =
! 4+ CYs(y,-y)ce
Zn s(ll"n'll”se

C\IJS(LIjn'li'l)
s"IJC(LIJn_LfJ)Ce

_SHJS(HJn_liJ)
CYC(y,-y) o

C(I.IJn-lfJ)SG

SYse

- QY se

Co

&n

Tn

,

(C-19)

In the above equation yaw angle has been taken as zero; the defining transformations

between body mass centered and wheel mass centered coordinate systems is shown in

Equation C-20.

§ C(Yn-Y)
S(Yn-Y)
n 0

Oy
]

=S (Yh-Y)
C(YPn-¥)
0
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c.7

The angular velocities about the body centered system (Equation C-21)

Cl.)g = e
Wy = l'gse (C-21)
Cop = lf’ Co,

are related to the angular velocities about the wheel centered systems through Equation
C-20 which are equations of constraint. This gives

w :(L)C( -l{J)-l-CL);S(l}J -‘.|J)

o (¥ " (C-22)

QW 2-Wes (Yo - Y) +05C (Y- §)

fo- the rotational motions.

In all cases the equations of motion, translation and rotation, have been written
about the center of mass of each element. In the case of the independently suspended
wheels the center of mass does not coincide with the center of rotation, so that care
must be taken to define the moment of inertia for each wheel mass in the proper context.

A recommended method of analysis is to use Lagrangian mechanics.

Simplification of the System of Equations

The models that have been discussed each represents a simplified description of the
vehicle suspension system, yet the programming and solution is difficult. It is, therefore,
of interest to investigate further simplifications or linearizations to produce a more tract-
able problem. Perhaps the most justifiable simplification is in the rotational freedom of

the wheel masses. The defining equations for the wheel rotational motion include terms

123



C.8

in which the difference in two angles appear, such as the difference between the body
roll and the wheel or axle roll. This angular difference can be linearized (small angle
assumption ) on the basis that the suspension system has but a limited range of free travel.
For the independent suspension this can be carried further, approximating the small
rotational motion by translational motion (such as the linear approach to the simple
pendulum). Linearizations of the vehicle body rotational motion can only be justified
for low amplitude input functions and/or for certain types of inputs. For a deterministic
input the magnitude of the response may be approximated prior to solution in the same
fashion that an analog problem is scaled.

Another simplifying approach that may be taken as an "initial investigation" is
a two dimensional model. |f a symmetric vehicle body is assumed, roll and pitch motions
are uncoupled and the vehicle motion in bounce and pitch can be studied with a "bicycle
model", or bounce and roll investigations made with a "two wheeled cart model *.

in establishing the degree of sophistication for the vehicle model, the particular
dynamic characteristics under study, the type of input, and the kind of computing equip~

ment tc be used must be considered.,

Linear n-Wheeled Vehicle and Yielding Surface Model

For the purpose of illustration, equations of motion and an analog computer circuit
are presented for a typical n-wheel rigid body vehicle where the body axes are assumed
to be principle axes of inertia. The wheels are represented by the axle~hub mass (mwi)
and a rim mass (mfi ). The rim masses are in contact with a yielding surface represented
by the effective soil mass (msi ). The surface profile is inserted between the soil and the

rim. A mass (mf) is attached to the body by a spring and a damper which may represent |
: !

|
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a piece of on-board equipment that could be used as a vibration damper. Equations
C-23 through C-28 are the equations of motion for this model and the symbols are

defined in Table C-~1.
Body Vertical
e n . .
mY =- Z[[ks] (¥ + ki Y- zy e - Ywi) + S Y + Xcj Y- zgj e - Ywi )]
| =

. . .o (C-23)
-mg -k (Y +x Y-z 8-Yg)-cp (Y +xc Y-z 0-Yg)
Body Roll
. n . . . .
L8 = ST [aig e O+ Yo 21 8= Vo) # 2 o5 (Y g Y= 260 - Y,.p)]
i=1 : . . (C-24)
b ke [ b g Yz 8- Y] b ze o[V g o ze 0 - ¥
Body Pitch
.e n . - . .
12 W= =[x K (Y + X ¥ 29 Ywid + xej o5; (Y + xgj Y= 2 0 - Vi)
=1 : : .. (C-25)
- xi ke [Y + i Y- 2 0 - Yf] - xc cF[Y +xo P-zo 0 - Y
Vibration Damper-Body Mounted-Vertical
me Yz kg [Y+xklil-sz-Yf]-l-cf[Y+xcl|J-zce-Yf]-m|:g (C-26)
Typical jth Wheel Vertical
i Yori == ki Y = Yei ] wi [Ywi Y]+ kv + X ¥~ 2k © = Vi)
. . .. (C-27)
+ Csi[Y + Xci l'J" Zci 0- le] -~ mwi g
Typical jth Rim Vertical
mei Yo =7 kwi [Yi = Yei ]+ cui[ i - Yei]- mi o - kg [Ye - (Vi + Y] (C28)
Equivalent Soil Mass at ifh Wheel Vertical
(C-29)

Mg YSi =g Ysi -G Ysi + kl’i [Y"i - (YPi + Ysi )]
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Table C-1

Y, Y, Y

in ’ Zki

Xcjr Zej

9 Y,y

Yir Ywis Yui
wi
wi
wi
i

Yo

ril ril

LIST OF SYMBOLS FOR GENERAL EQUATIONS OF MOTION

OF AN INDEPENDENTLY SUSPENDED VEHICLE WITH N-WHEELS

ON YIELDING SOIL.

Sprung mass of the vehicle

Vertical motion of the c.g. of the sprung mass of the vehicle
in acceleration, velocity, and displacement.

.th

Suspension spring constant connecting the |
vehicle.

wheel to the

-th

Suspension damping constanf connecting the j
vehicle.

wheel to the

Distances from mass center of vehicle to the point of connection
between ith wheel suspension component (K - spring, C-damper)
and the vehicle. They carry with them the sign as determined
from the body fixed axes.

Pitch acceleration, Pitch velocity, and Pitch displacement of the
vehicle, respectively.

Roll acceleration, roll velocity, and roll displacement of the
vehicle, respectively.

Mass moments of inertia of the sprung mass about the roll and pitch
axes, respectively.

Number of wheels on the vehicle.
The ith wheel center acceleration, velocity and displacement.

Mass of the jth wheel
.th

Wheel spring constant for the |’ wheel.

th

Wheel damping constant for the |/ wheel.

th

Mass of the rim in contact with the soil for the |'" wheel.

Vertical acceleration, velocity, and displacement of rim
mass connected to the ifh wheel.

126



< =

t
'

Table C-1 (CONT.)

Y., Yo Vertical acceleration, velocity, and displacement of the
soil under the ifh wheel.

The effective mass of the soil under the ifh wheel.

Soil damping constant

An imaginary spring rate between rim mass and the soil mass under
the jth wheel which has the property,

) {0 if Y2 Y + Y
i~
wif Yi< Yy + Y
Gravitational constant determined by where the vehicle is located.
Non-linear spring constant in soil model (See Appendix B).

Profile height under the ifh wheel

In this model angular motions have been linearized. The included non-linearities
are the lift-off capability of the rim mass and the non-linear soil model of Appendix B.
For the purpose of analog simulation it has been assumed here that the consolidation phase
of soil response is represented by the linear coefficient of sub-grade reaction K. Function
generators can be used in place of the potentiometers if actual loading curves are avail-
able for the soil in question (See Appendix B). The effects of the linear consolidation

soil rate K, and elastic recovery spring constant kg in Equation C-29 are given in Equa-

tion C-30.
mg; Vi = = Ky Vi = G Vi + kej [Yri = (o + Yg)] = (kg = ko) (Y = Yyj max)  (C=30)
where Y 1., is the time dependent maximum deflection that the soil under the ifh wheel

has experienced due to the loading of the ith and preceding wheels. The subscript "max"

as used here is defined in Equation C=31.
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v'em ZVE/ R por v Ky (C-31)

max

max
Y otherwise

1 ]
where Y is the latest value for which Y = Y and t is a time measure which is reset

max
to zero whenever Y' takes on a new value. The vehicle velocity and the wheel radius

are represented by V and Ri respectfully. The maximum soil deflection at the ifh wheel

is defined in the following manner.

Ysi max = Ysk max '[Ysi - Yok max] max (C-32)

where Y is the properly time delayed maximum soil deflection due to the preceding

sk max
in-line kth wheel.

Figures C~5a and C-5b show an analog computer network for simulation of the general
n-wheeled vehicle model without the body mounted vibration damper. Figure C-5a is the
network for the three degrees of freedom (vertical pitch, and roll) of the vehicle body with
inputs from each of the n-wheels. Figure C-5b is a typical ifh whee| computer network which
must be repeated n times for the n-wheels with appropriate coefficients and time delays.
While this vehicle model is linear it is possible to easily incorporate non-linearities of
wheel travel limits with diodes around the appropriate amplifiers, or non-linearities of spring

rates and damping coefficients with diode function generators replacing the appropriate

potentiometers.

MOLAB Concept Model

A simple MOLAB Concept model was chosen to implement and demonstrate techniques.
The same model was previously used for analysis to step inpufs(m) and is based on the early

conceptional MOLAB drawing made by NASA-MSFC shown in Figure C-6. A schematic
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"n"" WHEELED VEHICLE BODY COMPUTER CIRCUIT

Figure C-5a GENERAL
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mode| for analysis based on the conceptional drawing is shown in Figure C-7. This model
is a rigid body model with four independently suspended wheels that have identical coef—
ficients. The values for the physical constants used in model analysis are shown in Table
C-2.
Appendix D gives the results of a linear frequency domain analysis of this model on

a non-yielding soil, where vehicle-surface separation was not allowed. Three different
versions were investigated and compared:

i. Independent suspension

2. Independent suspension with on-board
vibration damper.

3. Solid axle suspension.

Table C-3 gives the list of changes and additions to the physical constants of Table C-2
which were used for the analysis with an on~board vibration damper.

Appendix E gives the results of a non-linear time domain analysis of this model
using an analog computer with white noise input. The equations of motion (Equations
C-23 through C~32) were modified to represent the MOLAB model and the analog computer
circuit was implemented from the circuit shown in Figures C~5a and C~5b. Table C-4 [ists
the physical constants for the yielding soil simulation. The time domain analysis included
the effects of both yielding and non-yielding soil effects and in each case vehicle~surface

separation was permitted and measured.
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Table C-2 PHYSICAL CONSTANTS FOR MOLAB VEHICLE

Value Value
Symbol Description M.K.S. Units English Units
m Body Mass 2950 kilograms 202 siugs

X

z

mwi
ki
Csi
kWi
Cwj

xsl
Xs3

z

i

Roll moment of inertia
Pitch moment of inertia
Wheel mass

Suspension spring rate
Suspension damping
Wheel spring rate
Wheel damping
Distance C.G. to front
Distance C. G. to rear

Distance C.G. to side

3145 kilograms (mefers)z

6240 kilograms (mei‘ers)2

22.8 kilograms

29200 newtons/mster
700 newton sec./meter
78100 newton/meter
35 newton sec./meter
1.27 meters

1.32 mefers

.75 meters

2520 slugs (ff)2
4600 slugs (ff)2
1.87 slugs
2000 pounds/ft.

43 pounds sec. /ft.
5350 pounds/ft.
2.4 pound sec. /ft.
4,17 ft.

4,33 ft.

5.57 ft.
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Table C-3 CHANGES AND ADDITIONS TO TABLE C-2
FOR ON-BOARD VIBRATION DAMPER
Value Value
Symbol Description M.K.S. Units English Units
m Body mass 2723 kilograms 186. 48 slugs
myg Vibration damper mass 226 kilograms 15.48 slugs

Body roll moment of inertia

2965 kilograms (merers)2

2187 slugs (ft)

X
I5 Body pitch moment of inertia 5862 kilograms (mei*ers)2 4324 slugs (fr)2
k¢ Spring rate vibration damper 895272 newtons/meter 61,320 pounds/ft
s Damping constant vibration
damper 70 newtons sec./meter 4.8 pounds sec. /ft.
xg Distance of vibration damper
behind body C.G. I.5 meters 5.0 ft.
z¢ Distance of vibration damper
to the left of body C.G. 0.7 meters 2.5 fr.
Table C-4  PHYSICAL CONSTANTS FOR YIELDING SOIL SIMULATION
Value Value
Symbol Description M.K.S. Units English Units
kg Elastic recovery spring rate
of soil 328600 newton/meter 22533 pounds/ft.
K Coefficient of subgrade
reaction 16430 newton/meter 1127 pounds/ft
C, Damping coefficient
of soil 3263 newton sec./meter 224 pounds sec. /ft.
my Effective soil mass 10 kilograms 0.686 slugs
My Rim mass of wheel 7 kilograms 0.48 slugs
R Radius of wheel 0.7 meter 2.5 ft.
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FREQUENCY DOMAIN ANALYSIS

By: J. M. Sneyd and R. G. Gergle

D.1 JIntroduction

Equations of motion were derived for a general n-wheeled vehicle model in Appendix C
and a specific four wheeled independent suspension model was described. In this appendix a
linear version of this model is analyzed using a frequency domain approach. The differential
equations of motion are converted to algebraic complex number equations via the Fourier trans-
form and transfer functions are obtained on a digital computer. These transfer functions are
combined, by the superposition theorem to predict the system response to random signal inputs.
It is shown that for inputs (in this case lunar surface profiles) which can be statistically character-
ized by a power speciral density, the system response can be statistically analyzed and a predict-

ion of the probability of exceeding limiting conditions can be made.

D.2  Description of Linearized Model

A schematic drawing of the vehicle is discussed in Appendix C. The total sprung mass
is made up of the vehicle body mass and the mass of an on-board vibration damper, say the fuel
cell. The fuel cell is attached to the body by a spring and damper. The body mass is assumed
to have three degrees of freedom: vertical transiation (bounce), roll and pitch rotations. The
fuel cell is restricted to vertical translation, as are each of the wheels. The suspension springs
and dampers have been assumed to be co-linear with the center of gravity of the wheel masses:
the same is true for the springs and dampers representing the wheels.

The equations of motion for this eight degree of freedom system are given below as

Equations D-1 through D-8. The notation employed in these equations is as follows: Subscripts
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- ke[ (V3 - )] + S (v + o), 0 - (2,00 - (Y]

'Cé_(+3) - ('YIZZI

My = K[V + X3y - @z - vy)] (0-6)
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within the brackets denotes a mass centered coordinate system, subscripts outside the brackets

denotes a dimension or a length from the mass center to a point in the mass element. For example

(Y I) is the vertical deflection of the body center of gravity and is a problem variable, while

(Z [)9 is the distance in the Z direction measured in the body centered system to the point of

attachment of mass element 9, and is a constant.

If the input functions (Y] I)’ (Y |4) are expressible in closed form, a solution to these

equations could be obtained in a formal way by taking the Laplace transform, (with zero for

the initial conditions) solving for the roots of the resulting polynomials and finding the inverse

transforms. The Fourier transform may be obtained from the Laplace transform by setting s = jc,

if the Fourier transform exists.(lé) The transformed equations for this model are presented in

matrix form, in Equation D=9 where A is the mechanical impedance.

Al

A2

A2

A32

A3

A3

A
33

Al4

Ag4

A
34

Agq

Ais

A5

Als
A6

A
36

A7

Az

A
37

)

Arg

A

28

A
38

0

Bay Y1y
B51 Y
Bo1 Y3

B71 Y14

The outputs and inputs are velocity column matrices. The impedance matrix A is a

symmetrical matrix defined by the relationship that A, = A -
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Equations D- 9-1 through D- 9-30 define each intercoordinate impedance

in terms of physical dimensions and quantities.

Ap = jom+C+C+Ci+C i+ G (D-9-1)
+[1/i] [K) + Kg + Ky + K]

Al == [CrEZ D+ Cy(Z ), +Cy(Z )5+ Cy(Z gt Co(Z))) (D=9-2)
(/i) [k @01+ Ky @y + Ky (Y3 + K, @4 + Ky 2 )]

Ay = CrXp +CyX g + Ca(X))g + Cq(X) 4+ Co (X)), (D-9-3)
+ [1/77w][Ky X)) + Ky (Xp)p + Kg (Xy)g + Ky (Xp)g + Ko (X )]

Alg = - C| ‘['/I(;)][Kd (D-9-4)

As = - Cy-[1/iw][K,] (D-9-5)

Ate = = C3-[1/iw][Kg] (D-5-6)

Az = C4—[l/iw_][K4] (D-9-7)

Ag = = Co=[1/ia [Ky] (b-9-8)

Azp = iwllg) +Cp(Z9)) 2y +Cp(29)2(Zy); (D-9-9)

+ C3(Z3(Z )3 + Cq(Z4aZ g + Co(Z g (Z))g
+[17i0d[K 2P @)y + Ky (252 )]

F /10 [K3 @ 3@ )3 + K Z g (@ )y + Ko (Z )g(Z )g)
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- C (X @ + G (X p(Z ),

F Cy(X g g + Cq (Xa(Z )y + Co (Xyg(Z g
- 710Ky X1 @ )y + Ky (X)p(Z ), + Ky (X)3(Z 3]

+ [1/ia)[Ky X2 )y + Ko K)o (Z o ]

¢, @y +[i/iadK; @]
@), +[i/i[K, @¢);]
C3 2 )5 +[1/id[Ks @3]
Co@pg +[/iad[Ky @]

Co 2y +[1/iud Ky (Z ]

Wy )+ Cp Xy Kedy + G Ko Xy,
+ C3 (X g (X)a(Xq)g + Cq (Xplg(Xy)g + Co (Xq)g(Xp)g
+ [i/7iwl[k X6y + Ky (XX + Kg (X)3(X )]

+ 171Ky X4y + Ko (X)g (X )o]

- ¢ xq - [izi) [k, Xp]
- Cp(Xq)p -[1/iw][Ky (X))
- C3 (X3 -[I/i][K3 (X 3]

- C4 (g -[1/10][Kg 1))
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(D-9-17)

(D-9-18)

(D-9-19)

(D-9-20)



Agg = = Co (Xplg - [1/10][Ky (X7s] (D-9-21)
Agg = iodmy +Cp +C5 +[I/iu][Ky + Ky (D-9-22)
Ass = jwmg +Cy +Cs +[1/i0]][Ky + Kg] (D-9-23}
A = Twmg +C3 + S +H[1/idd[Kg + K] (D-9-24)
A7z = iwms +Cq +Cg +[i/i)[Kg + Kgl (D-9~25)
Agg = iwmy +Co +[1/iu[Ko] (D-9-26)
Bar = Cs +[1/icd[Ks] (D-9-27)
Bs, = Cg +[‘/io.]['<6] (D-9-28)
8, = 7 +[i/iallk] (D-9-29)
Bsy = Cg +[1/icd[Kg] (D-9-30)

The acceleration and displacement in ferms of the velocity variables are:
Displacement = Velocity /jw ; Acceleration = Velocity (j w) (D-10)
In matrix notation Equation D=9 can be written:

Aljw) o(jw) =1 (jw) (D-11)
where A(jW) is the impedance matrix, O(jw) is the output column matrix and 1(jw) is the input
column matrix. The matrix solution for the outputs is:

o w) = A™1 () W) (D-12)

where A"(ig)) is the inverse of A(jw).
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Equations D~10 and D-12 allow the outputs to be determined for any time derivative with
any time derivative as the input, such as acceleration output for a displacement input, etc. From

this array the output can be determined for one input at a time or for all four inputs (four wheels)

simultaneously, each having an arbitrary phase angle.

The impedance matrix A(jw ) in Equation D=9 has the following properties:
. 1t is symmetrical

2.

The off-diagonal ferms define the cross-coupling between
the various modes of motion.

The imaginary part of the diagonal terms, when equated to zero
give the uncoupled, undamped natural frequency for that mode.

D.3  Statistical Approach and Power Spectral Density

In Appendix A the statistical classification of surface profiles has been discussed, and

the power spectral density was defined. In the literature (References 16, 36 and 37) it is shown

that the power spectral density of the output for a linear system with a single input is the product

of the square of the system transfer function and the power spectral density of the input.

P () =] T(w) |2 Py (w) (D-13)

For the vehicle system described by Equations D-9, which has four inputs, the response P.S.D.
P (W) is given by:

4 4 *
P(W) = Z ; Tom (iw) Ty (@) Py (jw) (D-14)
m = ] =
where T, is the transfer function between the output motion in question and the mth input,
*
Tom

is the complex conjugate of T, and P is the cross-spectral density between the m'P and

the kTP inputs which becomes the usual P.5.D. for m = k. It was shown in Appendix A that the

146



vertical velocity power spectral density of the lunar surface is "white", and may be expressed
by Equation D-15.

P, (F)=4m2vcC (D-15)

where V is the horizontal velocity of the vehicle and C is a measure of the surface roughness.
Converting Equation D-14 from circular frequency (rad/sec) to cps and substituting Equation

D- 15 for the four P.S.D. terms, yield:

4 n-1

P (F) = Z[4n2 vc|T°n|2]+ ‘Zﬁ[z Ton Top Pnk] (D-16)
=

n=|

The first four terms in Equation D-16 are the square of the modulus of the transfer function
between each of the inputs and the output in question, times the P.S.D. of equation D-15. The
remaining [2 terms of Equation D-14 have been reduced to six terms in Equation D-16 by noting
that this is a summation of complex conjugates which yields twice the real part of each pair.
Since the surface roughness is represented by a profile which has a "white" velocity P.S.D.

(16)

{(Equation D-15), it can be shown that the velocity cross-spectral density between any two
parallel traces is zero. Thus, it can be assumed that the terms in Equation D-16, which contain
cross—spectral densities between the left and right wheel inputs, are zero. The cross-spectral
density between in~line following wheels is the Fourier transform of a Dirac delta function which
is non-zero only for time t = wheel base/velocity.

With the wheels numbered 1, 2, 3 and 4 for left front, right front, left rear and right

rear respectively and the distance between front and rear wheel given by D = X1 + X3

(See Table C-2), the cross- spectral density terms in Equation D=16 can be written as:

Pa1= Pgy= Py3= Pz = 0 (b-17)
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and  P3j= Pyy=4w2 CV (cos 2m £ -8— + i sin 207 f —3—) (D-18)

Substituting Equations D=17 and D-18 into D~ 16 gives:

4
P, () = 4ﬂ2cv[Z Ton|?
n=1

* *
D .. .. D\
+ 2@\{(.[0] T03 + T02 T°4 ) (cos 27Tf-v- +isin ZTTF-V—){]

/

(D-19)

Equation D-19 gives the output P.5.D. for one motion of a vehicle with two sets of
following in-line wheels. If the inputs are all separate parallel profiles (i.e., which are not
in-line ) then Equation D-19 can be further simplified to the form

P )esnloy 2
o ()= N | Tonl (b-20)

£

n=I
Equation D-20 was used to compute the output P.5.D. for the body bounce, pitch and roll for
the vehicle model described in Section C.9 of Appendix C. The assumption of independént in-
puts to all four wheels of this vehicle model is subject to question, but the level of sophistication
of the model and the limitations imposed by linearity did not seem to warrant the additional compu-
tation time required to include the coupling terms between the inputs for this demonstration of

frequency domain analysis.

D.4  Results of Model Analysis

The numerical values of Tables C-2 and C-3 in Appendix C were substituted into Equa-
tion D-9 for analysis. The imaginary components of the diagonal terms in the impedance matrix
were equated to zero to estimate the natural frequencies. These uncoupled, undamped resonant

frequencies are listed in Table D~I.
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Table D-1 APPROXIMATE RESONANT FREQUENCIES

Degree of Freedom 7 Frequency
Body vertical 1.04 cps
Body roll 1.74 cps
Body pitch .92 cps
Wheels vertical 10 cps
Fuel cell vertical 10 cps

The resonant frequency of the fuel cell was chosen equal to the wheel frequency to allow the
fuel cell to damp the body vertical bounce motion at the wheel hop frequency.

A digital computer was used to tabluate the transfer functions from Equation D-9 by
computing the outputs for each degree of freedom in discrete frequencies between 0.4 and 40
cps for each input separately. Figures D=1 through D-4 show the transfer functions between the
body vertical motion and each of the four wheels and are direct reproductions of digital "print
out plots." The differences between left and right wheel inputs are due to the asymmetrical
location of the fuel cell. The smail difference between front and rear wheel inputs is due to the
asymmetry of the body center of gravity.

Since the body is nearly symmetrical, the transfer functions for each of the wheel inputs
are approximately the same. Therefore, only a representative sample of the results will be presented.
The transfer functions between the body bounce, roll, and pitch and the left front wheel are shown
in Figure D=5 in the frequency range of U.4 to 14 cps, which covers the resonant frequencies of the

three body motions. The resonant frequencies noted in the fransfer functions show good agreement
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with those listed in Table D-l. Figure D=6 shows the transfer function between body vertical
and the left front wheel with and without the fuel cell. Also shown in Figure D-6 is the transfer
function for a solid axle version of the vehicle. The similarity of the three transfer functions
shows that vehicle suspension geometry does not significantly alter the gross dynamic behavior
of the vehicle.

Figure D-7 is a plot of the power spectral density of the body bounce displacement
calculated from Equation D~20 with a white velocity input to all four wheels. This P.S.D. is
normalized by making the vertical scale Py (1) / 4772 CV. It is apparent that most of the vibra-
tional activity is concentrated in the frequency range near the body resonances.

In Appendix A it was shown that a Gaussian assumption for the distribution of profile
height is valid. If a Gaussian random process is applied as an input to a linear system, the out-
put is also Gaussian. Since the mean value has been assumed to be zero in this analysis, the
variance (or its square root; the standard deviation) is sufficient to predict the probability of ex-
ceeding any given level. The variance is the integral of the P.5.D. on frequency and can be
computed from Equations D~21,D-22 and D-23 for the displacement, velocity and acceleration

respectively.

7 :[Pd (f) of = 4W“ CV (2_17_f) Z 1., 1% of (D-21)
(] n=
@
. A
2 2
oy =fpv (f) of = 4W“ CV L ITonl of (D-22)
o n=1
o= fPQ (= 4m-Cv [(271) eronl of (b-23)
a
(e} ‘n=1
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Equations D-21, D-22 and D-23 predict that the variance of the vehicle motion is
directly proportional to the surface roughness coefficient, C, and to the vehicle velocity, V,
for this linear model with independent input to each wheel. The integrals on the right hand
side of these equations can be evaluated numerically over the frequency range of interest from
the digital tabulation of the transfer function. These values specify the essential dynamic
characteristics of the vehicle model. The effects of vehicle velocity and surface roughness
can then be easily evaluated in terms of the probability of exceeding design limitations.

Figure D~8 is a plot of the probability of vehicle lift-off (percent of the time of
surface-vehicle separation) versus vehicle speed for two different values of surface roughness.
The surface roughness coefficients were chosen from Table A-3 as exiremes for the lunar sur-
face segments analyzed in Appendix A. The variance of the vertical c.g. acceleration for the
independent suspension model with suspended fuel cell was calculated via Equation D-23.  Lift-
off was defined as the percent of the time that the Gaussian distribution of body vertical ac-
celeration exceeded one lunar g.

Figure D-9 shows a similar plot for the probability of vehicle pitchover. In this case
the pitch displacement was calculated from Equation D-21 and the limit was established at that
point where pitch displacement exceeded the static equilibrium position. The pitch motion was
chosen since the unusual vehicle geometry gives a higher probability of pitchover than rollover.
While in the realistic case, the vehicle operator will undoubtedly take the appropriate evasive
action to avoid pitchover of the vehicle, the estimate of this probability for a straight line

path at a constant velocity is a meaningful parameter for vehicle configuration comparison.
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TIME DOMAIN ANALYSIS

By: C. H. Hoppe

The model described in Section C,? of Appendix C was anchlyzed in fwo different forms
using analog computer techniques in order to demonstrate time domain analysis.

1. By making the assumptions of left to right symmetry for the vehicle and by assuming
identical inputs to both sides (i.e., correlated inputs to the right and left sides
of the vehicle), it is possible to collapse the vehicle into a two dimensional model
having six degrees of freedom. The remaining six degrees are the vehicle body
vertical translation and pitch rotation modes as well as the vertical translation of
the wheel and rim masses. This model was analyzed on a yielding surface using

an adaptation of the computer network shown in Figure C~5.

2. The second form was a seven degree of freedom model which included the bounce,
pitch and roll motions of the vehicle body and the vertical translation of each of
the four unsprung masses. This model is described together with an analog computer
network for simulation in Reference 14. This model was analyzed on a non-yielding
surface with uncorrelated inputs to the left and right front wheels which were time
delayed to the rear wheels. Separate uncorrelated random inputs were also used
to all four wheels of this vehicle model in order to allow a comparison with the

results of the frequency domain analysis in Appendix D.

E.1 Input Considerations

A Scott random noise generator was used to generate the random velocity white noise

function necessary for vehicle analysis. The output of this generator is a white noise with
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Gaussian distribution between the frequencies of 10 cps and 106 cps. Since the analog computer
simulation of the vehicle model was programmed for real time, it was necessary to lower the
frequency range of the white noise to accomodate the vehicle body resonances near one cps.

For this reason, and also to allow multiple inputs for vehicle analysis, the output of the noise
generator was recorded on a Precision Instruments eight channel f.m, tape recorder. The record-
ing speed was 37.5 inches per second and by playing back at a speed of .375 inches per second

a random noise signal was obtained which was white between the frequencies of . 1 and 100 cps.
The high frequency cut-off was determined by the limitation of the tape recorder af this play-
back speed. Four different channels were recorded at different times from the white noise genera-
tor to allow uncorrelated random noise signals.

Figure E-1 is a strip chart recording of the random noise signal and its integral. The
integral was obtained by direct analog integration with a low frequency cut-off at .5 cps to
eliminate drift. Figure E-2 shows a power spectral density plot of the white noise input calcu-
lated directly on the analog computer using techniques discussed in Reference 12. While this
integration does not adequately account for long wave length surface slope characteristics these
can be taken into account in the analysis of the output.

Scaling of the input was achieved by equating the variance of the white noise input
evaluated on an anolog computer with the variance of the vertical velocity of o typical lunar
profile. The variance of a lunar profile, in temporal frequency, has been shown to be equal
to (f - f2) 4712 VC = K, where C is a measure of surface roughness, V is the vehicle
horizontal velocity and f{ and f, are limits of infegration in the frequency domain. For a
selected surface roughness (C = 3.6 x 1074 meters) and a vehicle velocity of unity , the variance
could be evaluated numerically. The gain of the output of the analog determination of the var-

iance (volts) could be adjusted to be consistent with the scaling (meters/ volt ) previously
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is noted that the integrated displacement input to the vehicle has a P.S.D. with a slope of -2,
Figure E-7 shows the output P.S5.D. of the vehicle c.g. vertical acceleration. The two peaks
below one cps are the vehicle body pitch and bounce resonances. A second harmonic of these
resonances can be seen which is due to the non-linearities of the vehicle system. The resonance
of the vertical wheel motions can be seen af approximately 10 cps in Figure BE-7.

The P.S.D. and A.P.D. plots in Figures E-2, E-4, E-5, E-6, and E~7 were calculated
directly on the analog computer. In order fo accomplish this calculation the appropriate signals
were recorded on a magnetic tape loop. The analog circuit for A.P.D. calculation is discussed
by the author in Reference 12 and the P.5.D. circuit is given in page 102 of Reference 38.

Figure E-8 shows a comparison of the time traces of vehicle body motions for yielding
and non-yielding soils. A difference in the equilibrium position of the vehicle bounce motions
is noted between the yielding and non-yielding surfaces. The yielding surface shows lower fre-
quency components for both body pitch and bounce motions as compared with the non-yielding
surface. This is due to the additional compliance of the surface. The effects of the hysteresis
damping of the soil can also be noted by comparing decay rates of vehicle body motions in
Figure E-8.

A preliminary parametric analysis of the suspension spring rates and damping was per~
formed for this vehicle. The rear suspension spring rate was changed first to a value of one-half
and then to a value of two times the original rate. The mean squared accelerations for the
vertical translation and pitch rotation modes of the vehicle body were measured in each case.
When the rear spring rate was one-half the original value the front spring rate was also lowered
by the same ratio. Similar variations in suspension damping were made. In this case the front
damping was doubled at the same time the rear damping was increased. Figures E~9 and E-10

show graphically the effects of changing spring rates and damping coefficients for both soft soils
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and non-yielding soils. From these figures it can be seen that the effects are more pronounced
when the vehicle is operating on non-yielding soils. In general, the mean squared acceleration
was less with decreased spring rates and increased damping. The lower limit on spring rate is

not a function of acceleration of the vehicle but is a function of the static deflection and limit~
ing motions of the vehicle wheels due to jounce and rebound constraints. As damping is increased
the mean squared acceleration is lowered to an optimum value of damping and then increases with

increased damping above this optimum value.

E.3  Three Dimensional Model Analysis

A three dimensional seven degree of freedom vehicle model was analyzed using random
inputs on a non-yielding surface. In this case independent random inputs were used for the
left and right hand sides of the vehicle and were properly time delayed to the rear wheels. The
feedback diode on the amplifierused for input in Figure C=5b gives an indication of surface
vehicle separation. This amplifier has approximately a one-half volt output at the time separa-~
tion has occurred due to the diode characteristics. This output can be amplified and shaped to
allow indication of whezl separation with the surface. It is possible to use hard limiters set at
the proper voltage to measure the time when one or any combination of wheels has separated
from the surface. Figure E-11 shows time traces of the vehicle body angular motions and the
indication of front wheel and all four wheel lift-off for this vehicle model. The lift-off
measurement is essentially a binary form where lift-off occurs at the lower level in the bottom
two traces of Figure E~11 and surface contact is represented by the upper level. Figure E-12
shows the output P.S.D. calculated from the analog output for the vertical displacement of the

body c.g. This is shown at two different vehicle speeds. The major peak in these plots is the
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vehicle bounce resonance. At two mph this resonance appears at a slightly lower frequency
than at one mph. This is probably due to the fact that the vehicle suffers separation from the
surface over a greater amount of the time at this speed. The surface separation will tend to
broaden the bounce resonance and lower it in frequency due fo the non-linear spring effects
of gravity which acts as the restoring force after separation has occurred.

The second hamonic of basic body motions noted in Figure E-6 is not apparent in
Figure E-12 and it would seem that this harmonic is due to the non-linearities of the non-
yielding surface model.

In addition to the time delayed inputs a separate independent input was used ro excite
each of the four wheels of this model to allow comparison with the frequency domain results
of Appendix D,  Figure E-13 gives a summary of the results of the four wheeled vehicle with
indpendent inputs to each of the wheels. The first time that the pitch, angular motion ex-
ceeded the static equilibrium limit occurred at approximately 2.8 meters per second (six mph).
The same vehicle model was employed in this instance as in the linear frequency domain approach
of Appendix D with the major difference that vehicle-surface separation (a non-linearity) was
allowed in the analog simulation. The restoring force on the vehicle for the analog simulation
is gravity. For the linear model analysis of Appendix D this restoring force was the vehicle
wheel and suspension springs in tension, With this non-linearity a surface separation greater
than 50 percent of the time can be obtained. At the speed where surface separation of all
four wheels occurred 50 percent of the time, the vehicle suffered the first pitch-over, Table
E-1 is a tabulation of the vertical body acceleration and percent lift-off of all four wheels.
The percent lift-off is calculated as a probability of exceeding one lunar g from a Gaussian
distribution determined by the measured standard deviation of vertical body acceleration and

.is also directly measured from the analog simulation.

175



Mean Square Vertical Acceleration in Lunar g's

| I R B B | T

90
2.5 I— | T ¥TT
A Front wheels off surface
O All wheels off surface
X Mean square acceleration —75.
2.0 |—
i — 60
1.5 — o
R o ’ — 45
I |
1.0 — R |
I 30
e
I Pitch-over l
0.5 }— ¥ X a at this speed—l
X o - 15
¥ o |
a © o |
A A (o]
A o | ¢
0L lo—_1o 1 -1 1111 I I N
0.04 0.08 0.20 0.40 0.80 1.60 4.00

Vehicle Speed (meters/second)

Figure E-13 SUMMARY OF RESULTS FROM
4-WHEEL SUSPENSION VEHICLE ON NON.YIELDING SURFACE

176

Percent of Time Off Surface




~
i

Table E~1 shows good agreement between the two measurements at about

S = 1 lunar g

For values below this level the analog simulation gives less lift-off

than the theoretical prediction and above this value the analog simulation gives a greater

percent of vehicle~surface separation.

Table E-1

VERTICAL BODY ACCELERATION AND

LIFT-OFF

“"Measured" Standard
Deviation of Vertical

% of time Lift-off
Theoretical Prediction

% of time Lift~off

Speed Body Acceleration from Lunar g. "Measured"
( mph) (Lunar g's) (See Appendix D) Analog Simulation
L .63 5.6 0
.2 .66 6.4 0.2
.3 .69 7.1 1.0
.4 .73 8.5 1.6
.5 .82 11.2 6.0
.6 .90 13.4 9.6
.7 .80 10.4 9.0
.8 .85 2.1 12.5
.9 .90 13.4 15.5
1.0 1.00 15.9 21.1
2.0 1.03 16.6 26.5
4.0 1.32 22.4 43.5
6.0 1.52 25.5 52.4
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E.4  Summary of Results of Non-Linear Analysis

In this appendix a vehicle model which included a non-linear yielding surface was
investigated in contrast to the linear model discussed in Appendix D. In both cases lineariza-
tion of rotational motion (small angle assumptions) has bgen used; the non-linearities in this
analysis included the freedom of the wheels to lift-off the surface, and a non-linear spring rate
representing the surface deformation. Comparing the results from these two studies show the
following: both models adequately predict resonances of the various motions, predictions of lift-
off agree fairly well at those speeds for which the body vertical acceleration (standard deviation)
is near one lunar g, predictions of limiting speed at which pitch-over is likely to occur show some
agreement. For the non-linear model the first pitch-over was detecfed at a speed of approximately
six miles per hour, while the linear analysis showed the probability of pitch-over occurring was
about 0.01 percent at this speed. These comparisons are based on a non-yielding surface. It
has been shown that the motion of the body is reduced when traversing a yielding surface, so
the limiting conditions predicted above are conservative estimates for yielding surfaces. |t
should also be kept in mind that linearity of angular motion has been assumed, so that although
the estimates of exceeding limiting conditions are not precise they do represent "ball park"

values.
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